Abstract

Background:AT2 receptors have an unclear function on development of abdominal aortic aneurysms (AAAs), although a pharmacological approach using the AT2 receptor antagonist PD123319 has implicated a role. The purpose of the present study was to determine the role of AT2 receptors in AngII-induced AAAs using a combination of genetic and pharmacological approaches. We also defined effects of AT2 receptors in AngII-induced atherosclerosis and thoracic aortic aneurysms.Methods and Results:Male AT2 receptor wild type (AT2 +/y) and deficient (AT2 -/y) mice in an LDL receptor -/- background were fed a saturated-fat enriched diet, and infused with either saline or AngII (500 ng/kg/min). AT2 receptor deficiency had no significant effect on systolic blood pressure during AngII-infusion. While AngII infusion induced AAAs, AT2 receptor deficiency did not significantly affect either maximal width of the suprarenal aorta or incidence of AAAs. The AT2 receptor antagonist PD123319 (3 mg/kg/day) and AngII were co-infused into male LDL receptor -/- mice that were either AT2 +/y or -/y. PD123319 had no significant effect on systolic blood pressure in either wild type or AT2 receptor deficient mice. Consistent with our previous findings, PD123319 increased AngII-induced AAAs. However, this effect of PD123319 occurred irrespective of AT2 receptor genotype. Neither AT2 receptor deficiency nor PD123319 had any significant effect on AngII-induced thoracic aortic aneurysms or atherosclerosis.Conclusions:AT2 receptor deficiency does not affect AngII-induced AAAs, thoracic aortic aneurysms and atherosclerosis. PD123319 augments AngII-induced AAAs through an AT2 receptor-independent mechanism.

Original languageEnglish
Article numbere61849
JournalPLoS ONE
Volume8
Issue number4
DOIs
StatePublished - Apr 12 2013

Funding

FundersFunder number
National Heart, Lung, and Blood Institute (NHLBI)R01HL062846
National Heart, Lung, and Blood Institute (NHLBI)

    ASJC Scopus subject areas

    • General

    Fingerprint

    Dive into the research topics of 'PD123319 Augments Angiotensin II-Induced Abdominal Aortic Aneurysms through an AT2 Receptor-Independent Mechanism'. Together they form a unique fingerprint.

    Cite this