TY - JOUR
T1 - Pencils of quadratic forms and hyperelliptic function fields
AU - Leep, David B.
AU - Schueller, Laura Mann
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2000/5/15
Y1 - 2000/5/15
N2 - Let P(k) denote the set of equivalence classes of nonsingular pencils of quadratic forms of even order defined over a field k, chark≠2. Let F(k) denote the set of k-isomorphism classes of hyperelliptic function fields defined over k. We define a map Φ: P(k)→F(k) and determine precisely when Φ is surjective and when Φ is injective. This extends a method used by A. Weil to study pairs of quadratic forms over finite fields.
AB - Let P(k) denote the set of equivalence classes of nonsingular pencils of quadratic forms of even order defined over a field k, chark≠2. Let F(k) denote the set of k-isomorphism classes of hyperelliptic function fields defined over k. We define a map Φ: P(k)→F(k) and determine precisely when Φ is surjective and when Φ is injective. This extends a method used by A. Weil to study pairs of quadratic forms over finite fields.
KW - Hyperelliptic function field
KW - Pencil of quadratic forms
KW - Quadratic form
UR - http://www.scopus.com/inward/record.url?scp=0034656511&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034656511&partnerID=8YFLogxK
U2 - 10.1006/jabr.1999.8168
DO - 10.1006/jabr.1999.8168
M3 - Article
AN - SCOPUS:0034656511
SN - 0021-8693
VL - 227
SP - 532
EP - 548
JO - Journal of Algebra
JF - Journal of Algebra
IS - 2
ER -