Abstract
Background: Tendinopathy is a common clinical pathology, with mixed treatment results, especially when chronic. In this study, we examine the effects of an ultrasonic debridement modality in a rabbit tendinopathy model. We asked four questions: 1) Was it possible to create and visualize with ultrasound a tendinopathy lesion in a rabbit Achilles tendon? 2) Was it possible to guide a 19-gauge ultrasonic probe into the tendinopathy lesion? 3) Following ultrasonic treatment, was tendinopathy debris histologically present? and 4) Was the collagen profile qualitatively and quantitatively normalized following treatment? Methods: Skeletally mature female New Zealand white rabbits (n = 12) were injected with, ultrasonography localization, 0.150 ml of collagenase into the Achilles tendon. The collagenase-induced Achilles tendinopathy (3 weeks) was treated with percutaneous ultrasonic debridement. The tendons were harvested, at 3 weeks after treatment, and were subjected to histological assessment (modified Movin score) and biochemical analysis (collagen isoform content). Results: Histopathological examination revealed that all tendons injected with collagenase showed areas of hypercellularity and focal areas of tendon disorganization and degeneration. The treated tendons had lower (improved) histopathological scores than injured tendons (P < 0.001). Western blot analysis showed that ultrasonic therapy restored, within statistical limits, collagen type I, III, and X expressions in a treated tendon, to qualitative and semi-quantitative levels of a normal tendon. Conclusions: We were successfully able to create a collagenase-injected tendinopathy lesion in a rabbit Achilles tendon and visualize the lesion with an ultrasound probe. A 19-gauge ultrasonic probe was inserted into the tendinopathic lesion under direct ultrasound guidance, and minimal tendinopathic debris remained after treatment. The treated tendon demonstrated a normalized qualitative and semi-quantitative collagen profile and improved histological appearance in the short term. This technique demonstrates scientific merit with respect to the minimally invasive treatment of tendinopathy and warrants further studies. Clinical relevance: Recalcitrant tendinopathy has evaded consistent non-operative treatment since the tendinopathic debris remains in situ, to some extent, with non-operative approaches. This percutaneous emulsification/evacuation approach, under direct ultrasound visualization, has the potential to cure recalcitrant tendinopathies without open surgery, which would benefit the patient and result in significant healthcare cost reductions.
Original language | English |
---|---|
Article number | 70 |
Journal | Journal of Orthopaedic Surgery and Research |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 12 2015 |
Bibliographical note
Publisher Copyright:© 2015 Kamineni et al.; licensee BioMed Central.
Keywords
- Animal model
- Collagen
- Collagenase
- Histology
- Tendinopathy
- Ultrasonic treatment
ASJC Scopus subject areas
- Surgery
- Orthopedics and Sports Medicine