TY - JOUR
T1 - Performance and visceral tissue growth and development of Holstein calves fed differing milk replacer allowances and starch concentrations in pelleted starter
AU - Yohe, T. T.
AU - Dennis, T. S.
AU - Buss, L. N.
AU - Croft, E. J.D.
AU - Quigley, J. D.
AU - Hill, T. M.
AU - Suárez-Mena, F. X.
AU - Aragona, K. M.
AU - Laarman, A. H.
AU - Costa, J. H.C.
AU - Steele, M. A.
N1 - Publisher Copyright:
© 2022 American Dairy Science Association
PY - 2022/5
Y1 - 2022/5
N2 - The objectives of this study were to investigate how milk replacer (MR) allowance and differing concentrations of starch and neutral detergent fiber in starter alters visceral tissue and overall growth of the calf. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) arranged in a 2 × 2 factorial based on daily MR allowance (MRA) and amount of starch in pelleted starter (SPS) as follows: 0.691 kg of MR/d [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch, respectively) and 1.382 kg of MR/day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered to minimize intake. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning, and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Intakes were measured daily, and body weight (BW) and blood samples were recorded and collected weekly. Calves were dissected in wk 8 for visceral tissue measurements. Overall, there was increased MR DM intake for the high- (0.90 ± 0.01 kg/d; ± SE) compared with the low-MRA (0.54 ± 0.01 kg/d) calves, whereas starter DM intake increased in low- (0.47 ± 0.05 kg/d) compared with high-MRA (0.20 ± 0.05 kg/d) calves, which was driven by increases in wk 6, 7, and 8. High-MRA calves had increased BW during wk 2, 3, 4, 5, 6, and 7. The difference in BW disappeared by wk 8, with overall average daily gain having a tendency to be increased in high (0.57 ± 0.04 kg/d) compared with low-MRA (0.50 ± 0.04 kg/d) calves, whereas average daily gain was increased in high-MRA calves during wk 2 and 3 and increased in low-MRA calves during wk 7 and 8. There were several differences throughout visceral tissue measurements, but most notably, an increase in rumen mass (i.e., full, empty, and digesta weights) in low- compared with high-MRA calves, as well as in low- compared with high-SPS calves was observed. The length, width, and 2-dimensional area of rumen papillae were also increased in low- (area: 0.88 ± 0.03 mm2) compared with high-MRA (0.46 ± 0.03 mm2) calves. The majority of differences were attributed to increased MR allowance, which contributed to reduced pelleted starter intake by more than 50% and reduced rumen development, whereas differences in starch intake from the completely pelleted starter had minimal effects on overall growth and tissue measurements.
AB - The objectives of this study were to investigate how milk replacer (MR) allowance and differing concentrations of starch and neutral detergent fiber in starter alters visceral tissue and overall growth of the calf. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) arranged in a 2 × 2 factorial based on daily MR allowance (MRA) and amount of starch in pelleted starter (SPS) as follows: 0.691 kg of MR/d [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch, respectively) and 1.382 kg of MR/day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered to minimize intake. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning, and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Intakes were measured daily, and body weight (BW) and blood samples were recorded and collected weekly. Calves were dissected in wk 8 for visceral tissue measurements. Overall, there was increased MR DM intake for the high- (0.90 ± 0.01 kg/d; ± SE) compared with the low-MRA (0.54 ± 0.01 kg/d) calves, whereas starter DM intake increased in low- (0.47 ± 0.05 kg/d) compared with high-MRA (0.20 ± 0.05 kg/d) calves, which was driven by increases in wk 6, 7, and 8. High-MRA calves had increased BW during wk 2, 3, 4, 5, 6, and 7. The difference in BW disappeared by wk 8, with overall average daily gain having a tendency to be increased in high (0.57 ± 0.04 kg/d) compared with low-MRA (0.50 ± 0.04 kg/d) calves, whereas average daily gain was increased in high-MRA calves during wk 2 and 3 and increased in low-MRA calves during wk 7 and 8. There were several differences throughout visceral tissue measurements, but most notably, an increase in rumen mass (i.e., full, empty, and digesta weights) in low- compared with high-MRA calves, as well as in low- compared with high-SPS calves was observed. The length, width, and 2-dimensional area of rumen papillae were also increased in low- (area: 0.88 ± 0.03 mm2) compared with high-MRA (0.46 ± 0.03 mm2) calves. The majority of differences were attributed to increased MR allowance, which contributed to reduced pelleted starter intake by more than 50% and reduced rumen development, whereas differences in starch intake from the completely pelleted starter had minimal effects on overall growth and tissue measurements.
KW - blood metabolite
KW - calf nutrition
KW - dairy
KW - gut development
KW - weaning
UR - http://www.scopus.com/inward/record.url?scp=85125475688&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125475688&partnerID=8YFLogxK
U2 - 10.3168/jds.2021-21286
DO - 10.3168/jds.2021-21286
M3 - Article
C2 - 35221069
AN - SCOPUS:85125475688
SN - 0022-0302
VL - 105
SP - 4099
EP - 4115
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 5
ER -