TY - JOUR
T1 - Pharmacologically distinct nicotinic acetylcholine receptors drive efferent-mediated excitation in calyx-bearing vestibular afferents
AU - Chris Holt, J.
AU - Kewin, Kevin
AU - Jordan, Paivi M.
AU - Cameron, Peter
AU - Klapczynski, Marcin
AU - McIntosh, J. Michael
AU - Crooks, Peter A.
AU - Dwoskin, Linda P.
AU - Lysakowski, Anna
N1 - Publisher Copyright:
© 2015 the authors.
PY - 2015
Y1 - 2015
N2 - Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9 α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9 α10 nAChR antagonists, a-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferentmediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia.
AB - Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9 α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9 α10 nAChR antagonists, a-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferentmediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia.
KW - ACh
KW - Calyx
KW - Vestibular afferent
KW - Vestibular efferent
KW - α6 nAChR
KW - α9 nAChR
UR - http://www.scopus.com/inward/record.url?scp=84923359614&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84923359614&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.3388-14.2015
DO - 10.1523/JNEUROSCI.3388-14.2015
M3 - Article
C2 - 25716861
AN - SCOPUS:84923359614
SN - 0270-6474
VL - 35
SP - 3625
EP - 3643
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 8
ER -