Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ

Paula V. Monje, David Sant, Gaofeng Wang

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


This study comprehensively addresses the phenotype, function, and whole transcriptome of primary human and rodent Schwann cells (SCs) and highlights key species-specific features beyond the expected donor variability that account for the differential ability of human SCs to proliferate, differentiate, and interact with axons in vitro. Contrary to rat SCs, human SCs were insensitive to mitogenic factors other than neuregulin and presented phenotypic variants at various stages of differentiation, along with a mixture of proliferating and senescent cells, under optimal growth-promoting conditions. The responses of human SCs to cAMP-induced differentiation featured morphological changes and cell cycle exit without a concomitant increase in myelin-related proteins and lipids. Human SCs efficiently extended processes along those of other SCs (human or rat) but failed to do so when placed in co-culture with sensory neurons under conditions supportive of myelination. Indeed, axon contact-dependent human SC alignment, proliferation, and differentiation were not observed and could not be overcome by growth factor supplementation. Strikingly, RNA-seq data revealed that ~ 44 of the transcriptome contained differentially expressed genes in human and rat SCs. A bioinformatics approach further highlighted that representative SC-specific transcripts encoding myelin-related and axon growth-promoting proteins were significantly affected and that a deficient expression of key transducers of cAMP and adhesion signaling explained the fairly limited potential of human SCs to differentiate and respond to axonal cues. These results confirmed the significance of combining traditional bioassays and high-resolution genomics methods to characterize human SCs and identify genes predictive of cell function and therapeutic value.

Original languageEnglish
Pages (from-to)6637-6660
Number of pages24
JournalMolecular Neurobiology
Issue number8
StatePublished - Aug 1 2018

Bibliographical note

Funding Information:
Acknowledgements We thank the technical assistance provided by Ketty Bacallao, Michael McGrath, Talia Robinson, Kristine Ravelo, and Natalia Andersen with cell culture and Derek Van Booven with RNA-seq. We acknowledge the human SC manufacturing team of The Miami Project to Cure Paralysis for evaluating the purity and viability of cell stocks and Yan Shi for assisting in automated image analysis. We greatly appreciate the contribution of Patrick Wood for communicating unpublished data from many years of research and facilitating access to cryopreserved stocks of human SCs, hybridoma cell lines, and antibodies. We thank the important contribution made by Mary Bunge and Margaret Bates on TEM studies. This work was supported by the National Institutes of Health Grants 1R21NS084326 (to P.V.M.), 1R01NS089525 (to G.W.), The Craig H. Neilsen Foundation (339576 to P.V.M.), The Miami Project to Cure Paralysis, and The Buoniconti Fund.

Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.


  • Adhesion signaling
  • Differentiation
  • Glia-neuron interactions
  • Proliferation
  • Transcriptome
  • cAMP signaling

ASJC Scopus subject areas

  • Neurology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ'. Together they form a unique fingerprint.

Cite this