Photoresponse of the conductivity in functionalized pentacene compounds

T. Tokumoto, J. S. Brooks, R. Clinite, X. Wei, J. E. Anthony, D. L. Eaton, S. R. Parkin

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


We report the investigation of the photoresponse of the conductivity of a recently synthesized class of organic semiconductors based on functionalized pentacene. These materials form high quality single crystals that exhibit a thermally activated resistivity. Unlike pure pentacene, the functionalized derivatives are readily soluble in acetone, and can be evaporated or spincast as thin films for potential device applications. The electrical conductivity of the single crystal materials is noticeably sensitive to ambient light changes. The purpose, therefore, of the present study, is to determine the nature of the photoresponse in terms of carrier activation versus heating effects, and also to measure the dependence of the photoresponse on photon energy. We describe a method, involving the temperature dependent photoresponse, which allows an unambiguous identification of the signature of heating effects in materials with a thermally activated conductivity. We find strong evidence that the photoresponse in the materials investigated is predominantly a highly localized heating mechanism. Wavelength dependent studies of the photoresponse reveal resonant features and cutoffs that indicate the photon energy absorption is related to the electronic structure of the material.

Original languageEnglish
Pages (from-to)5208-5213
Number of pages6
JournalJournal of Applied Physics
Issue number9
StatePublished - Nov 1 2002

ASJC Scopus subject areas

  • Physics and Astronomy (all)


Dive into the research topics of 'Photoresponse of the conductivity in functionalized pentacene compounds'. Together they form a unique fingerprint.

Cite this