TY - JOUR
T1 - PHYTOCHROME INTERACTING FACTOR1 interactions leading to the completion or prolongation of seed germination
AU - Dirk, Lynnette M.A.
AU - Kumar, Santosh
AU - Majee, Manoj
AU - Downie, A. Bruce
N1 - Publisher Copyright:
© 2018, © 2018 Taylor & Francis Group, LLC.
PY - 2018/10/3
Y1 - 2018/10/3
N2 - In Arabidopsis thaliana, the basic Helix Loop Helix transcription factor, PHYTOCHROME INTERACTING FACTOR1 (PIF1) is known to orchestrate the seed transcriptome such that, ultimately, proteins repressing the completion of germination are produced in darkness. While PIF1-mediated control of abscisic acid (ABA) and gibberellic acid (GA) anabolism/catabolism is indirect, PIF1 action favors ABA while discriminating against GA, firmly establishing ABA’s repressive influence on the completion of germination. The result is tissue that is more sensitive to and producing more ABA; and is less responsive to and deficient in GA. Illumination of the appropriate wavelength activates phytochrome which enters the nucleus, and binds to PIF1, initiating PIF1’s phosphorylation by diverse kinases, subsequent polyubiquitination, and hydrolysis. One mechanism by which phosphorylated PIF1 is eliminated from the cells of the seed upon illumination involves an F-BOX protein, COLD TEMPERATURE GERMINATING10 (CTG10). Discovered in an unbiased screen of activation tagged lines hastening the completion of seed germination at 10°C, one indirect consequence of CTG10 action in reducing PIF1 titer, should be to enhance the transcription of genes whose products work to increase bioactive GA titer, shifting the intracellular milieu from one that is repressive to, toward one conducive to, the completion of seed germination. We have tested this hypothesis using a variety of Arabidopsis lines altered in CTG10 amounts. Here we demonstrate using bimolecular fluorescence complementation that PIF1 interacts with CTG10 and show that, in light exposed seeds, PIF1 is more persistent in ctg10 relative to WT seeds while it is less stable in seeds over-expressing CTG10. These results are congruent with the relative transcript abundance from three genes whose products are involved in bioactive GA accumulation. We put forth a model of how PIF1 interactions in imbibed seeds change during germination and how a permissive light signal influences these changes, leading to the completion of germination of these positively photoblastic propagules.
AB - In Arabidopsis thaliana, the basic Helix Loop Helix transcription factor, PHYTOCHROME INTERACTING FACTOR1 (PIF1) is known to orchestrate the seed transcriptome such that, ultimately, proteins repressing the completion of germination are produced in darkness. While PIF1-mediated control of abscisic acid (ABA) and gibberellic acid (GA) anabolism/catabolism is indirect, PIF1 action favors ABA while discriminating against GA, firmly establishing ABA’s repressive influence on the completion of germination. The result is tissue that is more sensitive to and producing more ABA; and is less responsive to and deficient in GA. Illumination of the appropriate wavelength activates phytochrome which enters the nucleus, and binds to PIF1, initiating PIF1’s phosphorylation by diverse kinases, subsequent polyubiquitination, and hydrolysis. One mechanism by which phosphorylated PIF1 is eliminated from the cells of the seed upon illumination involves an F-BOX protein, COLD TEMPERATURE GERMINATING10 (CTG10). Discovered in an unbiased screen of activation tagged lines hastening the completion of seed germination at 10°C, one indirect consequence of CTG10 action in reducing PIF1 titer, should be to enhance the transcription of genes whose products work to increase bioactive GA titer, shifting the intracellular milieu from one that is repressive to, toward one conducive to, the completion of seed germination. We have tested this hypothesis using a variety of Arabidopsis lines altered in CTG10 amounts. Here we demonstrate using bimolecular fluorescence complementation that PIF1 interacts with CTG10 and show that, in light exposed seeds, PIF1 is more persistent in ctg10 relative to WT seeds while it is less stable in seeds over-expressing CTG10. These results are congruent with the relative transcript abundance from three genes whose products are involved in bioactive GA accumulation. We put forth a model of how PIF1 interactions in imbibed seeds change during germination and how a permissive light signal influences these changes, leading to the completion of germination of these positively photoblastic propagules.
KW - CTG10
KW - PIF1
KW - Seed
KW - germination
KW - light
UR - http://www.scopus.com/inward/record.url?scp=85054569298&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054569298&partnerID=8YFLogxK
U2 - 10.1080/15592324.2018.1525999
DO - 10.1080/15592324.2018.1525999
M3 - Article
C2 - 30296201
AN - SCOPUS:85054569298
SN - 1559-2316
VL - 13
JO - Plant Signaling and Behavior
JF - Plant Signaling and Behavior
IS - 10
M1 - e1525999
ER -