Plk1 phosphorylation of Orc2 and Hbo1 contributes to gemcitabine resistance in pancreatic cancer

Bing Song, X. Shawn Liu, Steven J. Rice, Shihuan Kuang, Bennett D. Elzey, Stephen F. Konieczny, Timothy L. Ratliff, Tony Hazbun, Elena G. Chiorean, Xiaoqi Liu

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Although gemcitabine is the standard chemotherapeutic drug for treatment of pancreatic cancer, almost all patients eventually develop resistance to this agent. Previous studies identified Polo-like kinase 1 (Plk1) as the mediator of gemcitabine resistance, but the molecular mechanism remains unknown. In this study, we show that Plk1 phosphorylation of Orc2 and Hbo1 mediates the resistance to gemcitabine. We show that the level of Plk1 expression positively correlates with gemcitabine resistance, both in pancreatic cancer cells and xenograft tumors. Overexpression of Plk1 increases gemcitabine resistance, while inhibition of Plk1 sensitizes pancreatic cancer cells to gemcitabine treatment. To validate our findings, we show that inhibition of Plk1 sensitizes tumors to gemcitabine treatment in a mouse xenograft study. Mechanistically, we find that Plk1 phosphorylation of Orc2 maintains DNA replication on gemcitabine treatment. Furthermore, Plk1 phosphorylation of Hbo1 transcriptionally increases cFos expression and consequently elevates its target multidrug resistance 1 (MDR1), which was previously reported to confer chemotherapeutic drug resistance. Knockdown of cFos or MDR1 sensitizes gemcitabine-resistant cells to gemcitabine treatment. Finally, pancreatic cancer cells expressing Plk1-unphosphorylatable mutants of Orc2 or Hbo1 are more sensitive to gemcitabine than cells expressing wild-type Orc2 or Hbo1. In short, our study provides a mechanism for Plk1-mediated gemcitabine resistance, suggesting that Plk1 is a promising target for treatment of gemcitabine-resistant pancreatic cancer.

Original languageEnglish
Pages (from-to)58-68
Number of pages11
JournalMolecular Cancer Therapeutics
Volume12
Issue number1
DOIs
StatePublished - Jan 2013

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Plk1 phosphorylation of Orc2 and Hbo1 contributes to gemcitabine resistance in pancreatic cancer'. Together they form a unique fingerprint.

Cite this