Abstract
Benzo[a]pyrene is an important environmental mutagen and carcinogen. Its metabolism in cells yields the mutagenic, key ultimate carcinogen 7R,8S,9S,10R-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, (+)-anti-BPDE, which reacts via its 10-position with N2-dG in DNA to form the adduct (+)-anti-BPDE-N2-dG. To gain molecular insights into BPDE-induced mutagenesis, we examined in vivo translesion synthesis and mutagenesis in yeast cells of a site-specific 10S (+)-trans-anti-BPDE-N2-dG adduct and the stereoisomeric 10R (-)-trans-anti-BPDE-N2-dG adduct. In wild-type cells, bypass products consisted of 76% C, 14% A and 7% G insertions opposite (+)-trans-anti-BPDE-N2-dG; and 89% C, 4% A and 4% G insertions opposite (-)-trans-anti-BPDE-N2-dG. Translesion synthesis was reduced by ∼26-37% in rad30 mutant cells lacking Polη but more deficient in rev1 and almost totally deficient in rev3 (lacking Polζ) mutants. C insertion opposite the lesion was reduced by ∼24-33% in rad30 mutant cells, further reduced in rev1 mutant, and mostly disappeared in the rev3 mutant strain. The insertion of A was largely abolished in cells lacking either Polη, Polζ or Rev1. The insertion of G was not detected in either rev1 or rev3 mutant cells. The rad30 rev3 double mutant exhibited a similar phenotype as the single rev3 mutant with respect to translesion synthesis and mutagenesis. These results show that while the Polζ pathway is generally required for translesion synthesis and mutagenesis of the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts, Polη, Polζ and Rev1 together are required for G→T transversion mutations, a major type of mutagenesis induced by these lesions. Based on biochemical and genetic results, we present mechanistic models of translesion synthesis of these two DNA adducts, involving both the one-polymerase one-step and two-polymerase two-step models.
Original language | English |
---|---|
Pages (from-to) | 417-425 |
Number of pages | 9 |
Journal | Nucleic Acids Research |
Volume | 34 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2006 |
Bibliographical note
Funding Information:We thank Zhongwen Xie for technical assistance. This work was supported by NIH grants CA92528 (to Z.W.), and CA20851 (to N.E.G.). Funding to pay the Open Access publication charges for this article was provided by the NIH grant CA92528.
Funding
We thank Zhongwen Xie for technical assistance. This work was supported by NIH grants CA92528 (to Z.W.), and CA20851 (to N.E.G.). Funding to pay the Open Access publication charges for this article was provided by the NIH grant CA92528.
Funders | Funder number |
---|---|
National Institutes of Health (NIH) | CA92528 |
National Childhood Cancer Registry – National Cancer Institute | R01CA020851 |
ASJC Scopus subject areas
- Genetics