Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel

Adam W.G. Alani, Younsoo Bae, Deepa A. Rao, Glen S. Kwon

Research output: Contribution to journalArticlepeer-review

132 Scopus citations

Abstract

Poly(ethylene glycol)-block-poly(aspartate-hydrazide) (PEG-p(Asp-Hyd)) was modified using either levulinic acid (LEV) or 4-acetyl benzoic acid (4AB) attached via hydrazone bonds. Paclitaxel (PTX) conjugated to the linkers formed PEG-p(Asp-Hyd-LEV-PTX) and PEG-p(Asp-Hyd-4AB-PTX). PEG-p(Asp-Hyd-LEV-PTX) and PEG-p(Asp-Hyd-4AB-PTX) assemble into unimodal polymeric micelles with diameters of 42 nm and 137 nm, respectively. PEG-p(Asp-Hyd-LEV-PTX) and PEG-p(Asp-Hyd-4AB-PTX) at a 1:1 and 1:5 molar ratio assemble into unimodal mixed polymeric micelles with diameters of 85 and 113 nm, respectively. PEG-p(Asp-Hyd-LEV-PTX) micelles release LEV-PTX faster at pH 5.0 than at pH 7.4 over 24 h. At pH 7.4 mixed polymeric micelles at 1:5 ratio show no difference in LEV-PTX release from PEG-p(Asp-Hyd-LEV-PTX) micelles. Mixed polymeric micelles at 1:5 molar ratio gradually release LEV-PTX at pH 5.0, with no release of 4AB-PTX. PEG-p(Asp-Hyd-LEV-PTX) micelles and mixed polymeric micelles exert comparable cytotoxicity against SK-OV-3 and MCF-7 cancer cell lines. In summary, mixed polymeric micelles based on PEG-p(Asp-Hyd-LEV-PTX) and PEG-p(Asp-Hyd-4AB-PTX) offer prospects for pH-dependent release of PTX, offering a novel prodrug strategy for adjusting its pharmacokinetic and pharmacodynamic properties for cancer therapy. If successful this delivery system offers an alternative new mode of delivery for paclitaxel with a new scope for its efficacy along with a minimal synthetic framework needed to accomplish this.

Original languageEnglish
Pages (from-to)1765-1772
Number of pages8
JournalBiomaterials
Volume31
Issue number7
DOIs
StatePublished - Mar 2010

Funding

FundersFunder number
Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious DiseasesR01AI043346
Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases

    Keywords

    • Controlled drug release
    • Hydrazone
    • Mixed micelle
    • Paclitaxel
    • Prodrug

    ASJC Scopus subject areas

    • Biophysics
    • Bioengineering
    • Ceramics and Composites
    • Biomaterials
    • Mechanics of Materials

    Fingerprint

    Dive into the research topics of 'Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel'. Together they form a unique fingerprint.

    Cite this