Abstract
Context: Dynamic postural stability is important for injury prevention, but little is known about how lower-extremity musculoskeletal characteristics (range of motion [ROM] and strength) contribute to dynamic postural stability. Knowing which modifiable physical characteristics predict dynamic postural stability can help direct rehabilitation and injury-prevention programs. Objective: To determine if trunk, hip, knee, and ankle flexibility and strength variables are significant predictors of dynamic postural stability during single-leg jump landings. Design: Cross-sectional study. Setting: Laboratory. Participants: 94 male soldiers (age 28.2 ± 6.2 y, height 176.5 ± 2.6 cm, weight 83.7 ± 26.0 kg). Intervention: None. Main Outcome Measures: Ankle-dorsiflexion and plantar-flexion ROM were assessed with a goniometer. Trunk, hip, knee, and ankle strength were assessed with an isokinetic dynamometer or handheld dynamometer. The Dynamic Postural Stability Index (DPSI) was used to quantify postural stability. Simple linear and backward stepwise-regression analyses were used to identify which physical characteristic variables were significant predictors of DPSI. Results: Simple linear-regression analysis revealed that individually, no variables were significant predictors of the DPSI. Stepwise backward-regression analysis revealed that ankle-dorsiflexion flexibility, ankle-inversion and -eversion strength, and knee-flexion and -extension strength were significant predictors of the DPSI (R2 = .19, P = .0016, adjusted R2 = .15). Conclusion: Ankle-dorsiflexion ROM, ankle-inversion and -eversion strength, and knee-flexion and -extension strength were identified as significant predictors of dynamic postural stability, explaining a small amount of the variance in the DPSI.
Original language | English |
---|---|
Pages (from-to) | 266-272 |
Number of pages | 7 |
Journal | Journal of Sport Rehabilitation |
Volume | 25 |
Issue number | 3 |
DOIs | |
State | Published - 2016 |
Bibliographical note
Publisher Copyright:© 2016 Human Kinetics, Inc.
Keywords
- Army
- Balance
- Lower extremity
- Musculoskeletal
ASJC Scopus subject areas
- Biophysics
- Orthopedics and Sports Medicine
- Physical Therapy, Sports Therapy and Rehabilitation
- Rehabilitation