PREDICTOR SELECTION AND MACHINE LEARNING REGRESSION METHODS TO PREDICT SATURATED HYDRAULIC CONDUCTIVITY FROM A LARGE PUBLIC SOIL DATABASE

Toby A. Adjuik, Sue E. Nokes, Michael D. Montross, Michael P. Sama, Ole Wendroth

Research output: Contribution to journalArticlepeer-review

Abstract

One of the most important soil hydraulic properties for modeling water transport in the vadose zone is saturated hydraulic conductivity. However, it is challenging to measure it in the field. Pedotransfer Functions (PTFs) are mathematical models that can predict saturated hydraulic conductivity (Ks) from easily measured soil characteristics. Though the development of PTFs for predicting Ks is not new, the tools and methods used to predict Ks are continuously evolving. Model performance depends on choosing soil features that explain the largest amount of Ks variance with the fewest input variables. In addition, the lack of interpretability in most "black box"machine learning models makes it difficult to extract practical knowledge as the machine learning process obfuscates the relationship between inputs and outputs in the PTF models. The objective of this study was to develop a set of new PTFs for predicting Ks using machine learning algorithms and a large database of over 8000 soil samples (the Florida Soil Characterization Database) while incorporating statistical methods to inform predictor selection for the model inputs. Of the machine learning (ML) models tested, random forest regression (RF) and gradient-boosted regression (GB) gave the best performances, with R2 = 0.71 and RMSE = 0.47 cm h-1 on the test data for both. Using the permutation feature importance technique, the GB and RF regression models showed similar results, where clay content described the most variation in the data, followed by bulk density. The implication of this study is that, when predicting Ks using the Florida Soil Characterization Database, priority should be given to obtaining quality data on clay content and bulk density as they are the most influential predictors for estimating Ks.

Original languageEnglish
Pages (from-to)285-296
Number of pages12
JournalJournal of the ASABE
Volume66
Issue number2
DOIs
StatePublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 American Society of Agricultural and Biological Engineers.

Keywords

  • Deep learning
  • Gradient boosted regression
  • Pedotransfer functions
  • Random forest regression
  • Soil database
  • Soil properties

ASJC Scopus subject areas

  • Forestry
  • Food Science
  • Biomedical Engineering
  • Agronomy and Crop Science
  • Soil Science

Fingerprint

Dive into the research topics of 'PREDICTOR SELECTION AND MACHINE LEARNING REGRESSION METHODS TO PREDICT SATURATED HYDRAULIC CONDUCTIVITY FROM A LARGE PUBLIC SOIL DATABASE'. Together they form a unique fingerprint.

Cite this