Abstract
Preferential flow is ubiquitous in soils, and it affects water infiltration, runoff, and contaminant transport. Undisturbed soil lysimeters (n = 10; 900 cm2) were collected from an agricultural field to quantify the effect of climate, soil moisture, connectivity, and agricultural practices on water transport through the shallow vadose zone. A series of 10 rainfall simulations was conducted on each lysimeter (n = 100 events) and data were analysed within a framework of five case studies where we assessed the impact of rainfall intensity (n = 30 events), soil moisture (n = 28), and tillage (n = 21). Three lysimeters that had near-zero flow initially were modified to investigate dynamics of direct surface connectivity through an artificial macropore in which we assessed the impacts of soil moisture (n = 12) and subsequent disruption via tillage (n = 9). Stable water isotopes were used to separate leachate into event (Qe) and pre-event water (Qpe). Results showed that event water transport in leachate was not affected by rainfall intensity (Qe/Q = 49% ± 21% to 50% ± 24%); however, event water decreased from 65% ± 5% to 23% ± 28% with increasing soil moisture. Lysimeters with artificial macropores resulted in leachate that was nearly all event water (85% ± 12% to 92% ± 4%) irrespective of soil moisture. Tillage decreased event water transport for both lysimeters with and without an artificial macropore by ~30%. Findings show how varying initial and boundary conditions produce a continuum of preferential flow. Water and tracer flux data collected in the current study are therefore essential for predicting conditions with high relevance of preferential flow and contaminant transport when assessing or modelling long-term hydrographs where these conditions are only met during a small proportion of the flow time.
Original language | English |
---|---|
Article number | e15057 |
Journal | Hydrological Processes |
Volume | 37 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2023 |
Bibliographical note
Publisher Copyright:© 2023 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Keywords
- flow pathway
- hydrograph separation
- lysimeter
- macropore
- tracer
- water isotope
ASJC Scopus subject areas
- Water Science and Technology