TY - JOUR
T1 - Procollagen C-endopeptidase enhancer protein 2 (PCPE2) reduces atherosclerosis in mice by enhancing scavenger receptor class B1 (SR-BI)-mediated high-density lipoprotein (HDL)-cholesteryl ester uptake
AU - Pollard, Ricquita D.
AU - Blesso, Christopher N.
AU - Zabalawi, Manal
AU - Fulp, Brian
AU - Gerelus, Mark
AU - Zhu, Xuewei
AU - Lyons, Erica W.
AU - Nuradin, Nebil
AU - Francone, Omar L.
AU - Li, Xiang An
AU - Sahoo, Daisy
AU - Thomas, Michael J.
AU - Sorci-Thomas, Mary G.
N1 - Publisher Copyright:
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2015/6/19
Y1 - 2015/6/19
N2 - Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr-/-, PCPE2-/- mice, which had elevated HDL levels compared with LDLr-/- mice with similar LDL concentrations. We found that LDLr-/-, PCPE2-/- mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr-/- mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr-/-, PCPE2-/- mice was similar to that reported for LDLr-/-, apoA-I-/- mice, which lack any apoA-I/HDL. Furthermore, LDLr-/-, PCPE2-/- mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr-/- mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system.
AB - Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr-/-, PCPE2-/- mice, which had elevated HDL levels compared with LDLr-/- mice with similar LDL concentrations. We found that LDLr-/-, PCPE2-/- mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr-/- mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr-/-, PCPE2-/- mice was similar to that reported for LDLr-/-, apoA-I-/- mice, which lack any apoA-I/HDL. Furthermore, LDLr-/-, PCPE2-/- mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr-/- mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system.
UR - http://www.scopus.com/inward/record.url?scp=84939623747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939623747&partnerID=8YFLogxK
U2 - 10.1074/jbc.M115.646240
DO - 10.1074/jbc.M115.646240
M3 - Article
C2 - 25947382
AN - SCOPUS:84939623747
SN - 0021-9258
VL - 290
SP - 15496
EP - 15511
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 25
ER -