Progestin withdrawal at parturition in the mare

Erin L. Legacki, C. J. Corbin, B. A. Ball, M. Wynn, S. Loux, S. D. Stanley, A. J. Conley

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Mammalian pregnancies need progestogenic support and birth requires progestin withdrawal. The absence of progesterone in pregnant mares, and the progestogenic bioactivity of 5α-dihydroprogesterone (DHP), led us to reexamine progestin withdrawal at foaling. Systemic pregnane concentrations (DHP, allopregnanolone, pregnenolone, 5α-pregnane-3β, 20α-diol (3β,20αDHP), 20α-hydroxy-5α-dihydroprogesterone (20αDHP)) and progesterone) were monitored in mares for 10 days before foaling (n = 7) by liquid chromatography-mass spectrometry. The biopotency of dominant metabolites was assessed using luciferase reporter assays. Stable transfected Chinese hamster ovarian cells expressing the equine progesterone receptor (ePGR) were transfected with an MMTV-luciferase expression plasmid responsive to steroid agonists. Cells were incubated with increasing concentrations (0-100 nM) of progesterone, 20αDHP and 3α,20βDHP. The concentrations of circulating pregnanes in periparturient mares were (highest to lowest) 3α,20βDHP and 20αDHP (800-400ng/mL respectively), DHP and allopregnanolone (90 and 30 ng/mL respectively), and pregnenolone and progesterone (4-2 ng/mL). Concentrations of all measured pregnanes declined on average by 50% from prepartum peaks to the day before foaling. Maximum activation of the ePGR by progesterone occurred at 30 nM; 20αDHP and 3α,20βDHP were significantly less biopotent. At prepartum concentrations, both 20αDHP and 3α,20βDHP exhibited significant ePGR activation. Progestogenic support of pregnancy declines from 3 to 5 days before foaling. Prepartum peak concentrations indicate that DHP is the major progestin, but other pregnanes like 20αDHP are present in sufficient concentrations to play a physiological role in the absence of DHP. The authors conclude that progestin withdrawal associated with parturition in mares involves cessation of pregnane synthesis by the placenta.

Original languageEnglish
Pages (from-to)323-331
Number of pages9
JournalReproduction
Volume152
Issue number4
DOIs
StatePublished - 2016

Bibliographical note

Publisher Copyright:
© 2016 Society for Reproduction and Fertility.

ASJC Scopus subject areas

  • Reproductive Medicine
  • Embryology
  • Endocrinology
  • Obstetrics and Gynecology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Progestin withdrawal at parturition in the mare'. Together they form a unique fingerprint.

Cite this