Prospects for chemical control and engineering of organically modified ceramics

Stephen E. Rankin, Alon V. McCormick

Research output: Contribution to journalConference articlepeer-review

Abstract

Hydrolytic polycondensation of silicon alkoxides and organically modified alkoxides shows promise as a route to new materials for medicine. Mathematical models of this polymerization accelerate the development of these materials and processes for their production. With a reliable model, one can rapidly explore a wide variety of options for controlling material properties. Here we describe a model for kinetics of sol-gel copolymerization of a simple pair of ethoxysilanes: (CH3)3Si(OC2H5) and (CH3)2Si(OC2H5)2. We then describe how reactor configuration alone can be used to control of polymer structure by choosing how to mix the reactants. An example is shown of maximizing homogeneity at any reactor residence time of interest in the model copolymer system by using the time of addition of the faster-reacting monomer.

Original languageEnglish
Pages (from-to)243-248
Number of pages6
JournalMaterials Research Society Symposium - Proceedings
Volume550
StatePublished - 1999
EventProceedings of the 1998 MRS Fall Meeting - The Symposium 'Advanced Catalytic Materials-1998' - Boston, MA, USA
Duration: Nov 30 1998Dec 3 1998

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Prospects for chemical control and engineering of organically modified ceramics'. Together they form a unique fingerprint.

Cite this