TY - JOUR
T1 - Prospects on clinical applications of electrical stimulation for nerve regeneration
AU - Sisken, Betty F.
AU - Walker, Janet
AU - Orgel, Michael
PY - 1993/4/1
Y1 - 1993/4/1
N2 - Regenerative capability is limited in higher vertebrates but present in organ systems such as skin, liver, bone, and to some extent, the nervous system. Peripheral nerves in particular have a relatively high potential for regeneration following injury. However, delay in regrowth or growth, blockage, or misdirection at the injury site, and growth to inappropriate end organs may compromise successful regeneration, leading to poor clinical results. Recent studies indicate that low‐intensity electrical stimulation is equivalent to various growth factors, offering avenues to improve these outcomes. We present a review of studies using electric and electromagnetic fields that provide evidence for the enhancement of regeneration following nerve injury. Electric and electromagnetic fields (EMFs) have been used to heal fracture non‐unions. This technology emerged as a consequence of basic studies [Yasuda, 1953; Fukada and Yasuda, 1957] demonstrating the piezoelectric properties of (dry) bone. The principle for using electrical stimulation for bone healing originated from the work of Bassett and Becker [1962], who described asymmetric voltage waveforms from mechanically deformed live bone. These changes were presumed to occur in bone during normal physical activity as a result of mechanical forces, and it was postulated that these forces were linked to modifications in bone structure. Endogenous currents present in normal tissue and those that occur after injury were proposed to modify bone structure [Bassett, 1989]. These investigators proposed that tissue integrity and function could be restored by applying electrical and/or mechanical energy to the area of injury. They successfully applied electrical currents to nonhealing fractures (using surgically implanted electrodes or pulsed currents using surface electrodes) to aid endogenous currents in the healing process. A considerable technological improvement was made with the noninvasive application of EMFs [Bassett et al., 1974] to accelerate fracture repair. This newer technique allowed the treatment of hard tissues without the complications of invasive electrode insertion. In addition, soft tissue injuries were now accessible for treatment by electromagnetic fields. In this article, we will first define the basic problems encountered in nerve injury and regeneration, and then review both in vitro and in vivo studies on the use of electric and electromagnetic fields to stimulate the healing process.
AB - Regenerative capability is limited in higher vertebrates but present in organ systems such as skin, liver, bone, and to some extent, the nervous system. Peripheral nerves in particular have a relatively high potential for regeneration following injury. However, delay in regrowth or growth, blockage, or misdirection at the injury site, and growth to inappropriate end organs may compromise successful regeneration, leading to poor clinical results. Recent studies indicate that low‐intensity electrical stimulation is equivalent to various growth factors, offering avenues to improve these outcomes. We present a review of studies using electric and electromagnetic fields that provide evidence for the enhancement of regeneration following nerve injury. Electric and electromagnetic fields (EMFs) have been used to heal fracture non‐unions. This technology emerged as a consequence of basic studies [Yasuda, 1953; Fukada and Yasuda, 1957] demonstrating the piezoelectric properties of (dry) bone. The principle for using electrical stimulation for bone healing originated from the work of Bassett and Becker [1962], who described asymmetric voltage waveforms from mechanically deformed live bone. These changes were presumed to occur in bone during normal physical activity as a result of mechanical forces, and it was postulated that these forces were linked to modifications in bone structure. Endogenous currents present in normal tissue and those that occur after injury were proposed to modify bone structure [Bassett, 1989]. These investigators proposed that tissue integrity and function could be restored by applying electrical and/or mechanical energy to the area of injury. They successfully applied electrical currents to nonhealing fractures (using surgically implanted electrodes or pulsed currents using surface electrodes) to aid endogenous currents in the healing process. A considerable technological improvement was made with the noninvasive application of EMFs [Bassett et al., 1974] to accelerate fracture repair. This newer technique allowed the treatment of hard tissues without the complications of invasive electrode insertion. In addition, soft tissue injuries were now accessible for treatment by electromagnetic fields. In this article, we will first define the basic problems encountered in nerve injury and regeneration, and then review both in vitro and in vivo studies on the use of electric and electromagnetic fields to stimulate the healing process.
KW - electric fields
KW - electromagnetic fields
KW - nerve regeneration
KW - nerve therapy
KW - stimulation of healing
KW - trophic factors
UR - http://www.scopus.com/inward/record.url?scp=0027461171&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027461171&partnerID=8YFLogxK
U2 - 10.1002/jcb.2400510404
DO - 10.1002/jcb.2400510404
M3 - Article
C2 - 8496243
AN - SCOPUS:0027461171
SN - 0730-2312
VL - 51
SP - 404
EP - 409
JO - Journal of Cellular Biochemistry
JF - Journal of Cellular Biochemistry
IS - 4
ER -