Protein kinase involved in lung injury susceptibility: Evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment

Mark S. Wainwright, Janet Rossi, James Schavocky, Susan Crawford, David Steinhorn, Anastasia V. Velentza, Magdalena Zasadzki, Vladimir Shirinsky, Yuzhi Jia, Jacques Haiech, Linda J. Van Eldik, D. Martin Watterson

Research output: Contribution to journalArticlepeer-review

131 Scopus citations

Abstract

Acute lung injury (ALI) associated with sepsis and iatrogenic ventilator-induced lung injury resulting from mechanical ventilation are major medical problems with an unmet need for small molecule therapeutics. Prevailing hypotheses identify endothelial cell (EC) layer dysfunction as a cardinal event in the pathophysiology, with intracellular protein kinases as critical mediators of normal physiology and possible targets for drug discovery. The 210,000 molecular weight myosin light chain kinase (MLCK210, also called EC MLCK because of its abundance in EC) is hypothesized to be important for EC barrier function and might be a potential therapeutic target. To test these hypotheses directly, we made a selective MLCK210 knockout mouse that retains production of MLCK108 (also called smooth-muscle MLCK) from the same gene. The MLCK210 knockout mice are less susceptible to ALI induced by i.p. injection of the endotoxin lipopolysaccharide and show enhanced survival during subsequent mechanical ventilation. Using a complementary chemical biology approach, we developed a new class of small-molecule MLCK inhibitor based on the pharmacologically privileged aminopyridazine and found that a single i.p. injection of the inhibitor protected WT mice against ALI and death from mechanical ventilation complications. These convergent results from two independent approaches demonstrate a pivotal in vivo role for MLCK in susceptibility to lung injury and validate MLCK as a potential drug discovery target for lung injury.

Original languageEnglish
Pages (from-to)6233-6238
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume100
Issue number10
DOIs
StatePublished - May 13 2003

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Protein kinase involved in lung injury susceptibility: Evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment'. Together they form a unique fingerprint.

Cite this