Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury

Wycliffe O. Opii, Vidya N. Nukala, Rukhsana Sultana, Jignesh D. Pandya, Kristen M. Day, Michael L. Merchant, Jon B. Klein, Patrick G. Sullivan, D. Allan Butterfield

Research output: Contribution to journalArticlepeer-review

138 Scopus citations

Abstract

Experimental traumatic brain injury (TBI) results in a significant loss of cortical tissue at the site of injury, and in the ensuing hours and days a secondary injury exacerbates this primary injury, resulting in significant neurological dysfunction. The mechanism of the secondary injury is not well understood, but evidence implicates a critical role for mitochondria in this cascade. This mitochondrial dysfunction is believed to involve excitotoxicity, disruption of Ca2+ homeostasis, production of reactive oxygen species (ROS), ATP depletion, oxidative damage of mitochondrial proteins, and an overall breakdown of mitochondrial bioenergetics. Although oxidative damage occurs following TBI, the identities of proteins undergoing oxidative modification after TBI have not been investigated. In the present study, we utilized the 3-h post-injury controlled cortical impact model of experimental TBI in 20 young adult male Sprague-Dawley rats, coupled with proteomics to identify specific mitochondrial fraction proteins from the cortex and hippocampus that were oxidatively modified after TBI. We identified, from the cortex, pyruvate dehydrogenase, voltage-dependent anion channel, fumarate hydratase 1, ATP synthase, and prohibitin. From the hippocampus, we identified cytochrome C oxidase Va, isovaleryl coenzyme A dehydrogenase, enolase-1, and glyceraldehyde-3-phosphate dehydrogenase as proteins that had undergone oxidative modification following TBI. In addition, we have also shown that, following TBI, there is a reduction in the activities of pyruvate dehydrogenase (PDH), complex I, and complex IV. These findings demonstrate that, following TBI, several proteins involved in mitochondrial bioenergetics are highly oxidatively modified, which may possibly underlie the massive breakdown of mitochondrial energetics and eventual cell death known to occur in this model. The identification of these proteins provides new insights into the mechanisms that take place following TBI and may provide avenues for possible therapeutic interventions after TBI.

Original languageEnglish
Pages (from-to)772-789
Number of pages18
JournalJournal of Neurotrauma
Volume24
Issue number5
DOIs
StatePublished - May 2007

Keywords

  • Controlled cortical impact
  • Mitochondria
  • Oxidative stress
  • Proteomics
  • Reactive oxygen species
  • Traumatic brain injury

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury'. Together they form a unique fingerprint.

Cite this