Quality assessment of beef using computer vision technology

Md Faizur Rahman, Abdullah Iqbal, Md Abul Hashem, Akinbode A. Adedeji

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Imaging technique or computer vision (CV) technology has received huge attention as a rapid and non-destructive technique throughout the world for measuring quality attributes of agricultural products including meat and meat products. This study was conducted to test the ability of CV technology to predict the quality attributes of beef. Images were captured from longissimus dorsi muscle in beef at 24 h post-mortem. Traits evaluated were color value (L*, a*, b*), pH, drip loss, cooking loss, dry matter, moisture, crude protein, fat, ash, thiobarbituric acid reactive substance (TBARS), peroxide value (POV), free fatty acid (FFA), total coliform count (TCC), total viable count (TVC) and total yeast-mould count (TYMC). Images were analyzed using the Matlab software (R2015a). Different reference values were determined by physicochemical, proximate, biochemical and microbiological test. All determination were done in triplicate and the mean value was reported. Data analysis was carried out using the programme Statgraphics Centurion XVI. Calibration and validation model were fitted using the software Unscrambler X version 9.7. A higher correlation found in a* (r=0.65) and moisture (r=0.56) with 'a*' value obtained from image analysis and the highest calibration and prediction accuracy was found in lightness (r2c=0.73, r2p=0.69) in beef. Results of this work show that CV technology may be a useful tool for predicting meat quality traits in the laboratory and meat processing industries.

Original languageEnglish
Pages (from-to)896-907
Number of pages12
JournalFood Science of Animal Resources
Volume40
Issue number6
DOIs
StatePublished - Nov 2020

Bibliographical note

Publisher Copyright:
© Korean Society for Food Science of Animal Resources. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licences/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords

  • Beef quality
  • Calibration
  • Computer vision technology
  • Correlation
  • Validation

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology

Fingerprint

Dive into the research topics of 'Quality assessment of beef using computer vision technology'. Together they form a unique fingerprint.

Cite this