Abstract
Brain-Machine Interaction (BMI) system motivates interesting and promising results in forward/feedback control consistent with human intention. It holds great promise for advancements in patient care and applications to neurorehabilitation. Here, we propose a novel neurofeedbackbased BCI robotic platform using a personalized social robot in order to assist patients having cognitive deficits through bilateral rehabilitation and mental training. For initial testing of the platform, electroencephalography (EEG) brainwaves of a human user were collected in real time during tasks of imaginary movements. First, the brainwaves associated with imagined body kinematics parameters were decoded to control a cursor on a computer screen in training protocol. Then, the experienced subject was able to interact with a social robot via our real-time BMI robotic platform. Corresponding to subject's imagery performance, he/she received specific gesture movements and eye color changes as neural-based feedback from the robot. This hands-free neurofeedback interaction not only can be used for mind control of a social robot's movements, but also sets the stage for application to enhancing and recovering mental abilities such as attention via training in humans by providing real-time neurofeedback from a social robot.
Original language | English |
---|---|
Title of host publication | Aerospace Applications; Advances in Control Design Methods; Bio Engineering Applications; Advances in Non-Linear Control; Adaptive and Intelligent Systems Control; Advances in Wind Energy Systems; Advances in Robotics; Assistive and Rehabilitation Robotics; Biomedical and Neural Systems Modeling, Diagnostics, and Control; Bio-Mechatronics and Physical Human Robot; Advanced Driver Assistance Systems and Autonomous Vehicles; Automotive Systems |
ISBN (Electronic) | 9780791858271 |
DOIs | |
State | Published - 2017 |
Event | ASME 2017 Dynamic Systems and Control Conference, DSCC 2017 - Tysons, United States Duration: Oct 11 2017 → Oct 13 2017 |
Publication series
Name | ASME 2017 Dynamic Systems and Control Conference, DSCC 2017 |
---|---|
Volume | 1 |
Conference
Conference | ASME 2017 Dynamic Systems and Control Conference, DSCC 2017 |
---|---|
Country/Territory | United States |
City | Tysons |
Period | 10/11/17 → 10/13/17 |
Bibliographical note
Publisher Copyright:Copyright © 2017 ASME.
Keywords
- Brain Computer Interface
- Human-robot interaction
- Motor imagery
- Neurofeedback
- Robot control
- Social robot
ASJC Scopus subject areas
- Control and Systems Engineering
- Industrial and Manufacturing Engineering
- Mechanical Engineering