Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants

Shuiqin Wu, Michel Schalk, Anthony Clark, R. Brandon Miles, Robert Coates, Joe Chappell

Research output: Contribution to journalArticlepeer-review

288 Scopus citations

Abstract

Terpenes constitute a distinct class of natural products that attract insects, defend against phytopathogenic microbes and combat human diseases. However, like most natural products, they are usually made by plants and microbes in small amounts and as complex mixtures. Chemical synthesis is often costly and inefficient, and may not yield enantiomerically pure terpenes, whereas large-scale microbial production requires expensive feedstocks. We engineered high-level terpene production in tobacco plants by diverting carbon flow from cytosolic or plastidic isopentenyl diphosphate through overexpression in either compartment of an avian farnesyl diphosphate synthase and an appropriate terpene synthase. Isotopic labeling studies suggest little, if any, metabolite exchange between these two subcellular compartments. The strategy increased synthesis of the sesquiterpenes patchoulol and amorpha-4,11-diene more than 1,000-fold, as well as the monoterpene limonene 10-30 fold, and seems equally suited to generating higher levels of other terpenes for research, industrial production or therapeutic applications.

Original languageEnglish
Pages (from-to)1441-1447
Number of pages7
JournalNature Biotechnology
Volume24
Issue number11
DOIs
StatePublished - Nov 2006

Bibliographical note

Funding Information:
We thank Dale Poulter, University of Utah, for the avian farnesyl diphosphate synthase gene, Peter Brodelius, Kalmar University, for the amorpha-4,11-diene synthase gene and Randy Dinkins, University of Kentucky, for providing the Arabidopsis RUBISCO transit peptide sequence DNA. Special thanks to Nihar Nayak for his excellent advice concerning plant transformation, Scott Kinison for logistical and technical support, and Suphata Kaewpraparn for assistance with the insect bioassay experiment, all associated with the University of Kentucky. This work was supported by grants from Firmenich, Geneva (to J.C.) and from the US National Institutes of Health (GM 13956 to R.M.C).

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology
  • Molecular Medicine
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants'. Together they form a unique fingerprint.

Cite this