Reflectivity and PDE of VUV4 Hamamatsu SiPMs in liquid xenon

P. Nakarmi, I. Ostrovskiy, A. K. Soma, F. Retière, S. Al Kharusi, M. Alfaris, G. Anton, I. J. Arnquist, I. Badhrees, P. S. Barbeau, D. Beck, V. Belov, T. Bhatta, J. Blatchford, P. A. Breur, J. P. Brodsky, E. Brown, T. Brunner, S. Byrne Mamahit, E. CadenG. F. Cao, L. Cao, C. Chambers, B. Chana, S. A. Charlebois, M. Chiu, B. Cleveland, M. Coon, A. Craycraft, J. Dalmasson, T. Daniels, L. Darroch, A. De St Croix, A. Der Mesrobian-Kabakian, R. Devoe, M. L.Di Vacri, J. Dilling, Y. Y. Ding, M. J. Dolinski, L. Doria, A. Dragone, J. Echevers, F. Edaltafar, M. Elbeltagi, L. Fabris, D. Fairbank, W. Fairbank, J. Farine, S. Ferrara, S. Feyzbakhsh, R. Fontaine, A. Fucarino, G. Gallina, P. Gautam, G. Giacomini, D. Goeldi, R. Gornea, G. Gratta, E. V. Hansen, M. Heffner, E. W. Hoppe, J. Hößl, A. House, M. Hughes, A. Iverson, A. Jamil, M. J. Jewell, X. S. Jiang, A. Karelin, L. J. Kaufman, T. Koffas, R. Krücken, A. Kuchenkov, K. S. Kumar, Y. Lan, A. Larson, K. G. Leach, B. G. Lenardo, D. S. Leonard, G. Li, S. Li, Z. Li, C. Licciardi, P. Lv, R. Maclellan, N. Massacret, T. McElroy, M. Medina-Peregrina, T. Michel, B. Mong, D. C. Moore, K. Murray, C. R. Natzke, R. J. Newby, Z. Ning, O. Njoya, F. Nolet, O. Nusair, K. Odgers, A. Odian, M. Oriunno, J. L. Orrell, G. S. Ortega, C. T. Overman, S. Parent, A. Piepke, A. Pocar, J. F. Pratte, V. Radeka, E. Raguzin, S. Rescia, M. Richman, A. Robinson, T. Rossignol, P. C. Rowson, N. Roy, J. Runge, R. Saldanha, S. Sangiorgio, K. Skarpaas Viii, G. St-Hilaire, V. Stekhanov, T. Stiegler, X. L. Sun, M. Tarka, J. Todd, T. I. Totev, R. Tsang, T. Tsang, F. Vachon, V. Veeraraghavan, S. Viel, G. Visser, C. Vivo-Vilches, J. L. Vuilleumier, M. Wagenpfeil, T. Wager, M. Walent, Q. Wang, M. Ward, J. Watkins, M. Weber, W. Wei, L. J. Wen, U. Wichoski, S. X. Wu, W. H. Wu, X. Wu, Q. Xia, H. Yang, L. Yang, O. Zeldovich, J. Zhao, Y. Zhou, T. Ziegler

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Understanding reflective properties of materials and photodetection efficiency (PDE) of photodetectors is important for optimizing energy resolution and sensitivity of the next generation neutrinoless double beta decay, direct detection dark matter, and neutrino oscillation experiments that will use noble liquid gases, such as nEXO, DARWIN, DarkSide-20k, and DUNE . Little information is currently available about reflectivity and PDE in liquid noble gases, because such measurements are difficult to conduct in a cryogenic environment and at short enough wavelengths. Here we report a measurement of specular reflectivity and relative PDE of Hamamatsu VUV4 silicon photomultipliers (SiPMs) with 50 μm micro-cells conducted with xenon scintillation light (∼175 nm) in liquid xenon. The specular reflectivity at 15ˆ incidence of three samples of VUV4 SiPMs is found to be 30.4±1.4%, 28.6±1.3%, and 28.0±1.3%, respectively. The PDE at normal incidence differs by ±8% (standard deviation) among the three devices. The angular dependence of the reflectivity and PDE was also measured for one of the SiPMs. Both the reflectivity and PDE decrease as the angle of incidence increases. This is the first measurement of an angular dependence of PDE and reflectivity of a SiPM in liquid xenon.

Original languageEnglish
Article numberP01019
JournalJournal of Instrumentation
Issue number1
StatePublished - Jan 17 2020

Bibliographical note

Publisher Copyright:
© 2020 IOP Publishing Ltd and Sissa Medialab.


  • Dark Matter detectors (WIMPs, axions, etc.)
  • Double-beta decay detectors
  • Noble liquid detectors (scintillation, ionization, double-phase)
  • Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc)

ASJC Scopus subject areas

  • Instrumentation
  • Mathematical Physics


Dive into the research topics of 'Reflectivity and PDE of VUV4 Hamamatsu SiPMs in liquid xenon'. Together they form a unique fingerprint.

Cite this