TY - JOUR
T1 - Region-specific deposition of dermal proteins between dermis and epidermis during induction of chick feather and scale rudiments.
AU - Peterson, C. A.
AU - Phillips, W. H.
AU - Grainger, R. M.
PY - 1989/4
Y1 - 1989/4
N2 - To begin to study the role of particular proteins in inductive tissue interactions, we have used density labelling techniques to determine whether any dermal proteins are found between embryonic chick dermis and epidermis at a stage when the dermis plays an important inductive role in epidermal differentiation. Epidermis will form feathers or scales depending on whether it interacts with dorsal or foot dermis, respectively, and the dermis can still influence epidermal differentiation when direct cell contact between the tissues is blocked by a membrane filter during culturing (Peterson & Grainger, 1985). In transfilter experiments, we detect a subset of dermal proteins within the filter between the tissues. Several of these dermal proteins are deposited in a region-specific manner, that is, they are only found associated with filters from either dorsal or foot dermis. We have previously shown that the expression of some of these proteins is specific to particular regions of dermis and is also associated with the inductive potential of the dermis (Peterson & Grainger, 1986). We detect only 17 dermal proteins which are transferred across the filter in these cultures and found in direct association with epidermis; of these 14 are common to both dorsal and foot dermis, and 3 are deposited in a region-specific manner. Our results lead us to hypothesize a significant function for certain dermal proteins in this inductive interaction either as part of the extracellular matrix or in direct association with epidermis.
AB - To begin to study the role of particular proteins in inductive tissue interactions, we have used density labelling techniques to determine whether any dermal proteins are found between embryonic chick dermis and epidermis at a stage when the dermis plays an important inductive role in epidermal differentiation. Epidermis will form feathers or scales depending on whether it interacts with dorsal or foot dermis, respectively, and the dermis can still influence epidermal differentiation when direct cell contact between the tissues is blocked by a membrane filter during culturing (Peterson & Grainger, 1985). In transfilter experiments, we detect a subset of dermal proteins within the filter between the tissues. Several of these dermal proteins are deposited in a region-specific manner, that is, they are only found associated with filters from either dorsal or foot dermis. We have previously shown that the expression of some of these proteins is specific to particular regions of dermis and is also associated with the inductive potential of the dermis (Peterson & Grainger, 1986). We detect only 17 dermal proteins which are transferred across the filter in these cultures and found in direct association with epidermis; of these 14 are common to both dorsal and foot dermis, and 3 are deposited in a region-specific manner. Our results lead us to hypothesize a significant function for certain dermal proteins in this inductive interaction either as part of the extracellular matrix or in direct association with epidermis.
UR - http://www.scopus.com/inward/record.url?scp=0024643361&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024643361&partnerID=8YFLogxK
M3 - Article
C2 - 2598810
AN - SCOPUS:0024643361
SN - 0950-1991
VL - 105
SP - 697
EP - 706
JO - Development (Cambridge)
JF - Development (Cambridge)
IS - 4
ER -