Regulation of ketogenic enzyme hmgcs2 by wnt/β-catenin/pparγ pathway in intestinal cells

Ji Tae Kim, Chang Li, Heidi L. Weiss, Yuning Zhou, Chunming Liu, Qingding Wang, B. Mark Evers

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

The Wnt/β-catenin pathway plays a crucial role in development and renewal of the intestinal epithelium. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme in the synthesis of ketone body β-hydroxybutyrate (βHB), contributes to the regulation of intestinal cell differentiation. Here, we have shown that HMGCS2 is a novel target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cancer cell lines and normal intestinal organoids. Inhibition of the Wnt/β-catenin pathway resulted in increased protein and mRNA expression of HMGCS2 and βHB production in human colon cancer cell lines LS174T and Caco2. In addition, Wnt inhibition increased expression of PPARγ and its target genes, FABP2 and PLIN2, in these cells. Conversely, activation of Wnt/β-catenin signaling decreased protein and mRNA levels of HMGCS2, βHB production, and expression of PPARγ and its target genes in LS174T and Caco2 cells and mouse intestinal organoids. Moreover, inhibition of PPARγ reduced HMGCS2 expression and βHB production, while activation of PPARγ increased HMGCS2 expression and βHB synthesis. Furthermore, PPARγ bound the promoter of HMGCS2 and this binding was enhanced by β-catenin knockdown. Finally, we showed that HMGCS2 inhibited, while Wnt/β-catenin stimulated, glycolysis, which contributed to regulation of intestinal cell differentiation. Our results identified HMGCS2 as a downstream target of Wnt/β-catenin/PPARγ signaling in intestinal epithelial cells. Moreover, our findings suggest that Wnt/β-catenin/PPARγ signaling regulates intestinal cell differentiation, at least in part, through regulation of ketogenesis.

Original languageEnglish
Article number1106
JournalCells
Volume8
Issue number9
DOIs
StatePublished - Sep 2019

Bibliographical note

Publisher Copyright:
© 2019 by the authors.

Funding

FundersFunder number
National Childhood Cancer Registry – National Cancer InstituteP30CA177558

    Keywords

    • HMGCS2
    • Intestinal cells
    • Ketogenesis
    • PPARγ
    • Wnt/β-catenin pathway
    • β-hydroxybutyrate

    ASJC Scopus subject areas

    • General Biochemistry, Genetics and Molecular Biology

    Fingerprint

    Dive into the research topics of 'Regulation of ketogenic enzyme hmgcs2 by wnt/β-catenin/pparγ pathway in intestinal cells'. Together they form a unique fingerprint.

    Cite this