Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana

Tao Li, Yumin Zhang, Dong Wang, Ying Liu, Lynnette M.A. Dirk, Jack Goodman, A. Bruce Downie, Jianmin Wang, Guoying Wang, Tianyong Zhao

Research output: Contribution to journalArticlepeer-review

106 Scopus citations

Abstract

Raffinose family oligosaccharides (RFOs) accumulate in seeds during maturation desiccation in many plant species. However, it remains unclear whether RFOs have a role in establishing seed vigor. GALACTINOL SYNTHASE (GOLS), RAFFINOSE SYNTHASE (RS), and STACHYOSE SYNTHASE (STS) are the enzymes responsible for RFO biosynthesis in plants. Interestingly, only raffinose is detected in maize seeds, and a unique maize RS gene (ZmRS) was identified. In this study, we found that two independent mutator (Mu)-interrupted zmrs lines, containing no raffinose but hyperaccumulating galactinol, have significantly reduced seed vigor, compared with null segregant controls. Unlike maize, Arabidopsis thaliana seeds contain several RFOs (raffinose, stachyose, and verbascose). Manipulation of A. thaliana RFO content by overexpressing ZmGOLS2, ZmRS, or AtSTS demonstrated that co-overexpression of ZmGOLS2 and ZmRS, or overexpression of ZmGOLS2 alone, significantly increased the total content of RFOs and enhanced Arabidopsis seed vigor. Surprisingly, while overexpression of ZmRS increased seed raffinose content, its overexpression dramatically decreased seed vigor and reduced the seed amounts of galactinol, stachyose, and verbascose. In contrast, the atrs5 mutant seeds are similar to those of the wild type with regard to seed vigor and RFO content, except for stachyose, which accumulated in atrs5 seeds. Total RFOs, RFO/sucrose ratio, but not absolute individual RFO amounts, positively correlated with A. thaliana seed vigor, to which stachyose and verbascose contribute more than raffinose. Taken together, these results provide new insights into regulatory mechanisms of seed vigor and reveal distinct requirement for RFOs in modulating seed vigor in a monocot and a dicot. Raffinose, the only member of the RFOs in maize, regulates maize seed vigor. Unlike maize, seeds of Arabidopsis thaliana also synthesize higher-order RFOs (stachyose or verbascose) in addition to raffinose. The total amount of RFOs and the ratio of RFOs to sucrose, especially the ratio of higher-order RFOs to sucrose, control A. thaliana seed vigor.

Original languageEnglish
Pages (from-to)1540-1555
Number of pages16
JournalMolecular Plant
Volume10
Issue number12
DOIs
StatePublished - Dec 4 2017

Bibliographical note

Publisher Copyright:
© 2017 The Author

Keywords

  • Arabidopsis
  • Maize
  • raffinose family oligosaccharides
  • seed vigor

ASJC Scopus subject areas

  • Molecular Biology
  • Plant Science

Fingerprint

Dive into the research topics of 'Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana'. Together they form a unique fingerprint.

Cite this