Removal of polystyrene nanoplastic beads using gravity-driven membrane filtration: Mechanisms and effects of water matrices

Hongyi Wan, Ke Shi, Zhiyuan Yi, Peng Ding, Linzhou Zhuang, Rollie Mills, Dibakar Bhattacharyya, Zhi Xu

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Nanoplastics (NPs) are emerging water contaminants and the smaller particle size of NPs further hinders the remediation in the aspects of energy consumption and removal efficiency. Due to the loose structure and tunable functionalities, nanofibrous membranes, with ultrathin fibers (73.3 ± 31.9 nm), were developed for NPs removal in a gravity-driven application. With an ultralow ΔP0 of 353 Pa, greater than92 % of model polystyrene NPs (average size from 107 to 1450 nm) were removed at an average water flux of 109 Lm-2h−1. With advanced material characterization, the removal mechanisms were determined as: (1) size-exclusive membrane interception, which dominates the removal when dNPs > dpores; and (2) membrane adsorption of smaller NPs via electrostatic and hydrophobic interactions. The distinct removal mechanisms trigger different long-term performances on removal and water flux. Complex water matrices were also evaluated, where acidic condition and anionic surfactant were observed to hinder the removal. In addition, the nanofibrous membranes showed resistance towards inorganic scaling whereas organic foulants decreased the water flux by 15.6 % after 40 consecutive filtration runs. The fouled membranes can be regenerated in mild conditions with 5 % ethanol. Overall, nanofibrous membranes are effective in NPs removal with the high-removal efficiency, low-fouling tendency, and ease of regeneration.

Original languageEnglish
Article number138484
JournalChemical Engineering Journal
Volume450
DOIs
StatePublished - Dec 15 2022

Bibliographical note

Publisher Copyright:
© 2022

Keywords

  • Electrospun
  • Gravity-driven
  • Membrane fouling
  • Nanofibrous membranes
  • Nanoplastics removal

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Removal of polystyrene nanoplastic beads using gravity-driven membrane filtration: Mechanisms and effects of water matrices'. Together they form a unique fingerprint.

Cite this