Abstract
The remarkable structural polymorphism of quadruplex-forming sequences has been a considerable impediment in the elucidation of quadruplex folds. Sequence modifications have commonly been used to perturb and purportedly select a particular form out of the ensemble of folds for nuclear magnetic resonance (NMR) or X-ray crystallographic analysis. Here we report a simple chromatographic technique that separates the individual folds without need for sequence modification. The sequence d(GGTGGTGGTGGTTGTGGTGGTGGTGG) forms a compact quadruplex according to a variety of common biophysical techniques. However, NMR and chromatography showed that this oligonucleotide produces at least eight monomeric quadruplex species that interconvert very slowly at room temperature. We have used a combination of spectroscopic, hydrodynamic and thermodynamic techniques to evaluate the physicochemical properties of the mixture and the individual species. These species have almost identical thermodynamic, hydrodynamic and electrophoretic properties, but significantly different NMR and circular dichroism (CD) spectra, as well as kinetic stability. These results demonstrate that simple standard low-resolution techniques cannot always be used for quadruplex fold determination or quality control purposes, and that simple thermodynamic analysis does not directly provide interpretable thermodynamic parameters.
Original language | English |
---|---|
Article number | gkq166 |
Pages (from-to) | 4877-4888 |
Number of pages | 12 |
Journal | Nucleic Acids Research |
Volume | 38 |
Issue number | 14 |
DOIs | |
State | Published - Mar 25 2010 |
Bibliographical note
Funding Information:National Institutes of Health (CA113735-01 to J.O.T.), National Institutes of Health Grant Number P20RR018733 from the National Center for Research Resources, and the Kentucky Challenge for Excellence. Funding for open access charge: National Institutes of Health (CA113735-01), NCI grant.
Funding
National Institutes of Health (CA113735-01 to J.O.T.), National Institutes of Health Grant Number P20RR018733 from the National Center for Research Resources, and the Kentucky Challenge for Excellence. Funding for open access charge: National Institutes of Health (CA113735-01), NCI grant.
Funders | Funder number |
---|---|
Kentucky Challenge for Excellence | |
National Institutes of Health (NIH) | |
National Childhood Cancer Registry – National Cancer Institute | R01CA113735 |
National Center for Research Resources | P20RR018733 |
ASJC Scopus subject areas
- Genetics