Abstract
REV1 functions in the DNA polymerase ζ mutagenesis pathway. To help understand the role of REV1 in lesion bypass, we have examined activities of purified human REV1 opposite various template bases and several different DNA lesions. Lacking a 3′→5′ proofreading exonuclease activity, purified human REV1 exhibited a DNA polymerase activity on a repeating template G sequence, but catalyzed nucleotide insertion with 6-fold lower efficiency opposite a template A and 19-27-fold lower efficiency opposite a template T or C. Furthermore, dCMP insertion was greatly preferred regardless of the specific template base. Human REV1 inserted a dCMP efficiently opposite a template 8-oxoguanine, (+)-trans-anti-benzo[a]pyrene-N2-dG, (-)-trans-anti-benzo[a]pyrene-N2-dG and 1,N6-ethenoadenine adducts, very inefficiently opposite an acetylamino-fluorene-adducted guanine, but was unresponsive to fluorene-adducted guanine, but was unresponsive to a template TT dimer or TT (6-4) photoproduct. Surprisingly, the REV1 specificity of nucleotide insertion was very similar in response to different DNA lesions with greatly preffered C insertion and least frequent A insertion. By combining the dCMP insertion activity of human REV1 with the extension synthesis activity of human polymerase κ, bypass of the trans-anti-benzo[a]pyrene-N2-dG adducts and the 1,N6-ethenoadenine lesion was achieved by the two-polymerase two-step mechanism. These results suggest that human REV1 is a specialized DNA polymerase that may contribute to dCMP insertion opposite many types of DNA damage during lesion bypass.
Original language | English |
---|---|
Pages (from-to) | 1630-1638 |
Number of pages | 9 |
Journal | Nucleic Acids Research |
Volume | 30 |
Issue number | 7 |
DOIs | |
State | Published - Apr 1 2002 |
Bibliographical note
Funding Information:We thank Fenghuan Yuan for technical assistance in the purification of human REV1 protein. This work was supported by a New Investigator Award in Toxicology from Burroughs Wellcome Fund (Z.W.) and NIH grants CA40463 (J.-S.T.) and CA20851 (N.E.G.).
ASJC Scopus subject areas
- Genetics