Restoration of iodide uptake in dedifferentiated thyroid carcinoma: Relationship to human Na+/I- symporter gene methylation status

G. M. Venkataraman, M. Yatin, R. Marcinek, K. B. Ain

Research output: Contribution to journalArticlepeer-review

198 Scopus citations

Abstract

Disseminated dedifferentiated thyroid epithelial carcinoma, which cannot sufficiently concentrate therapeutic radioiodide, is a terminal disease without any effective systemic treatment or chemotherapy. This is a likely consequence of loss of human sodium-iodide symporter (hNIS) function. We hypothesized that hNIS transcriptional failure in thyroid carcinoma could be consequent to methylation of DNA in critical regulatory regions and could be reversed with chemical demethylation treatment. Analysis of hNIS messenger ribonucleic acid (mRNA) expression in 23 tumor samples revealed that although loss of this expression corresponded to loss of clinical radioiodide uptake, some thyroid carcinomas with hNIS mRNA expression did not concentrate iodide, suggesting additional posttranscriptional mechanisms for loss of hNIS function. In addition, analysis of DNA methylation in CpG-rich regions of the hNIS promoter extending to the first intron failed to define specific methylation patterns associated with transcriptional failure in human thyroid tumor samples. In seven human thyroid carcinoma cell lines lacking hNIS mRNA, treatment with 5-azacytidine or sodium butyrate was able to restore hNIS mRNA expression in four cell lines and iodide transport in two cell lines. Investigation of methylation patterns in these cell lines revealed that successful restoration of hNIS transcription was associated with demethylation of hNIS DNA in the untranslated region within the first exon. This was also associated with restoration of expression of thyroid transcription factor-1. These results suggest a role for DNA methylation in loss of hNIS expression in thyroid carcinomas as well as a potential application for chemical demethylation therapy in restoring responsiveness to therapeutic radioiodide.

Original languageEnglish
Pages (from-to)2449-2457
Number of pages9
JournalJournal of Clinical Endocrinology and Metabolism
Volume84
Issue number7
DOIs
StatePublished - 1999

Funding

FundersFunder number
National Childhood Cancer Registry – National Cancer InstituteR29CA058935

    ASJC Scopus subject areas

    • Endocrinology, Diabetes and Metabolism
    • Biochemistry
    • Endocrinology
    • Clinical Biochemistry
    • Biochemistry, medical

    Fingerprint

    Dive into the research topics of 'Restoration of iodide uptake in dedifferentiated thyroid carcinoma: Relationship to human Na+/I- symporter gene methylation status'. Together they form a unique fingerprint.

    Cite this