TY - JOUR
T1 - Retentive force of zirconia implant crowns on titanium bases following different surface treatments
AU - Arce, Celin
AU - Lawson, Nathaniel C.
AU - Liu, Perng Ru
AU - Lin, Chee Paul
AU - Givan, Daniel A.
N1 - Publisher Copyright:
© 2018, by Quintessence Publishing Co. Inc.
PY - 2018
Y1 - 2018
N2 - Purpose: Screw-retained zirconia implant crowns with an internal titanium base have favorable mechanical properties compared with single-piece zirconia implant crowns; however, the screw-retained implant crowns require adequate bonding between the zirconia crown and the titanium base. This study measured the retention between a titanium base and a full-contour zirconia implant crown following different surface treatments of their bonded surfaces. Materials and Methods: Full-contour screw-retained zirconia implant crowns were fabricated to fit a titanium base. The crowns were bonded to the titanium bases following one of four treatment protocols (n = 15 per protocol group): no surface treatment (Control), 10-methacryloyloxydecyl dihydrogen phosphate (MDP) primer on the intaglio of crown and exterior of base (MDP), alumina airborne-particle abrasion of the intaglio of crown and exterior of base (Alu), and alumina airborne-particle abrasion and an MDP primer on the intaglio of crown and exterior of base (Alu+MDP). All crowns were bonded to the base with resin cement. Specimens were stored in water for 24 hours at 37°C and then thermocycled in water, with a temperature range of 5°C to 55°C, for 15,000 cycles with a 15-second dwell time. Crowns were separated from the titanium bases using a universal testing machine. The four treatment protocols were compared using one-way analysis of variance (ANOVA), followed by Tukey post hoc tests (P < .05). Sectioned specimens were examined with scanning electron microscopy (SEM). Results: Retention forces for Control (737.8 ± 148.9 N) and MDP (804.1 ± 114.5 N) were significantly greater than Alu+MDP (595.5 ± 122.2 N), which was significantly greater than Alu (428.2 ± 93.8 N). Visual inspection of the debonded specimens showed that the majority of the cement remnants were seen on the external surface of the titanium bases. Microscopic examination of the interface between the crown and the unaltered base shows that the cement gap is approximately 13 μm at the crest of the microgrooves and 50 μm within the channel of the microgrooves. After airborne-particle abrasion, the microgrooves became significantly dulled, and the cement gap increased to 27 to 40 μm at the crest and 55 to 58 μm in the channels. Conclusion: Airborne-particle abrasion of titanium bases that contain retentive microgrooves prior to bonding is contraindicated. Application of an MDP primer demonstrated limited improvement in the retention of the zirconia implant crowns.
AB - Purpose: Screw-retained zirconia implant crowns with an internal titanium base have favorable mechanical properties compared with single-piece zirconia implant crowns; however, the screw-retained implant crowns require adequate bonding between the zirconia crown and the titanium base. This study measured the retention between a titanium base and a full-contour zirconia implant crown following different surface treatments of their bonded surfaces. Materials and Methods: Full-contour screw-retained zirconia implant crowns were fabricated to fit a titanium base. The crowns were bonded to the titanium bases following one of four treatment protocols (n = 15 per protocol group): no surface treatment (Control), 10-methacryloyloxydecyl dihydrogen phosphate (MDP) primer on the intaglio of crown and exterior of base (MDP), alumina airborne-particle abrasion of the intaglio of crown and exterior of base (Alu), and alumina airborne-particle abrasion and an MDP primer on the intaglio of crown and exterior of base (Alu+MDP). All crowns were bonded to the base with resin cement. Specimens were stored in water for 24 hours at 37°C and then thermocycled in water, with a temperature range of 5°C to 55°C, for 15,000 cycles with a 15-second dwell time. Crowns were separated from the titanium bases using a universal testing machine. The four treatment protocols were compared using one-way analysis of variance (ANOVA), followed by Tukey post hoc tests (P < .05). Sectioned specimens were examined with scanning electron microscopy (SEM). Results: Retention forces for Control (737.8 ± 148.9 N) and MDP (804.1 ± 114.5 N) were significantly greater than Alu+MDP (595.5 ± 122.2 N), which was significantly greater than Alu (428.2 ± 93.8 N). Visual inspection of the debonded specimens showed that the majority of the cement remnants were seen on the external surface of the titanium bases. Microscopic examination of the interface between the crown and the unaltered base shows that the cement gap is approximately 13 μm at the crest of the microgrooves and 50 μm within the channel of the microgrooves. After airborne-particle abrasion, the microgrooves became significantly dulled, and the cement gap increased to 27 to 40 μm at the crest and 55 to 58 μm in the channels. Conclusion: Airborne-particle abrasion of titanium bases that contain retentive microgrooves prior to bonding is contraindicated. Application of an MDP primer demonstrated limited improvement in the retention of the zirconia implant crowns.
KW - Airborne particle abrasion
KW - Implant crown
KW - MDP
KW - Titanium base
KW - Zirconia
UR - http://www.scopus.com/inward/record.url?scp=85048062453&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048062453&partnerID=8YFLogxK
U2 - 10.11607/jomi.5915
DO - 10.11607/jomi.5915
M3 - Article
C2 - 29355855
AN - SCOPUS:85048062453
SN - 0882-2786
VL - 33
SP - 530
EP - 535
JO - International Journal of Oral and Maxillofacial Implants
JF - International Journal of Oral and Maxillofacial Implants
IS - 3
ER -