Abstract
A general survey is provided on the capability of Monte Carlo (MC) modeling in tissue optics while paying special attention to the recent progress in the development of methods for speeding up MCsimulations. The principles of MC modeling for the simulation of light transport in tissues, which includes the general procedure of tracking an individual photon packet, common light-tissue interactions that can be simulated, frequently used tissue models, common contact/noncontact illumination and detection setups, and the treatment of time-resolved and frequency-domain optical measurements, are briefly described to help interested readers achieve a quick start. Following that, a variety of methods for speeding up MC simulations, which includes scaling methods, perturbation methods, hybrid methods, variance reduction techniques, parallel computation, and special methods for fluorescence simulations, as well as their respective advantages and disadvantages are discussed. Then the applications of MC methods in tissue optics, laser Doppler flowmetry, photodynamic therapy, optical coherence tomography, and diffuse optical tomography are briefly surveyed. Finally, the potential directions for the future development of the MCmethod in tissue optics are discussed.
Original language | English |
---|---|
Article number | 050902 |
Journal | Journal of Biomedical Optics |
Volume | 18 |
Issue number | 5 |
DOIs | |
State | Published - 2013 |
Bibliographical note
Funding Information:The authors would like to acknowledge the financial support from Tier 1 grant and Tier 2 grant funded by the Ministry of Education in Singapore (Grant Nos. RG47/09 and MOE 2010-T2-1-049).
Keywords
- Monte Carlo
- light transport in tissues
- numerical simulation
- optical spectroscopy
- tissue optics
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering