Abstract
Image geolocalization, inferring the geographic location of an image, is a challenging computer vision problem with many potential applications. The recent state-of-the-art approach to this problem is a deep image classification approach in which the world is spatially divided into cells and a deep network is trained to predict the correct cell for a given image. We propose to combine this approach with the original Im2GPS approach in which a query image is matched against a database of geotagged images and the location is inferred from the retrieved set. We estimate the geographic location of a query image by applying kernel density estimation to the locations of its nearest neighbors in the reference database. Interestingly, we find that the best features for our retrieval task are derived from networks trained with classification loss even though we do not use a classification approach at test time. Training with classification loss outperforms several deep feature learning methods (e.g. Siamese networks with contrastive of triplet loss) more typical for retrieval applications. Our simple approach achieves state-of-the-art geolocalization accuracy while also requiring significantly less training data.
Original language | English |
---|---|
Title of host publication | Proceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017 |
Pages | 2640-2649 |
Number of pages | 10 |
ISBN (Electronic) | 9781538610329 |
DOIs | |
State | Published - Dec 22 2017 |
Event | 16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy Duration: Oct 22 2017 → Oct 29 2017 |
Publication series
Name | Proceedings of the IEEE International Conference on Computer Vision |
---|---|
Volume | 2017-October |
ISSN (Print) | 1550-5499 |
Conference
Conference | 16th IEEE International Conference on Computer Vision, ICCV 2017 |
---|---|
Country/Territory | Italy |
City | Venice |
Period | 10/22/17 → 10/29/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition