Abstract
We present the vector, scalar, and tensor renormalization constants (RCs) using overlap fermions with either regularization independent momentum subtraction (RI/MOM) or symmetric momentum subtraction (RI/SMOM) as the intermediate scheme on the lattice with lattice spacings a from 0.04 fm to 0.12 fm. Our gauge field configurations from the MILC and RBC/UKQCD collaborations include sea quarks using either the domain wall or the HISQ action, respectively. The results show that RI/MOM and RI/SMOM can provide consistent renormalization constants to the MS¯ scheme, after proper a2p2 extrapolations. But at p∼2 GeV, both RI/MOM and RI/SMOM suffer from nonperturbative effects which cannot be removed by the perturbative matching. The comparison between the results with different sea actions also suggests that the renormalization constant is discernibly sensitive to the lattice spacing but not to the bare gauge coupling in the gauge action.
Original language | English |
---|---|
Article number | 114506 |
Journal | Physical Review D |
Volume | 106 |
Issue number | 11 |
DOIs | |
State | Published - Dec 1 2022 |
Bibliographical note
Publisher Copyright:© 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.
ASJC Scopus subject areas
- Nuclear and High Energy Physics