Rin GTPase couples nerve growth factor signalinq to p38 and b-Raf/ERK pathways to promote neuronal differentiation

Geng Xian Shi, Jiahuai Han, Douglas A. Andres

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


In neuronal precursor cells, the magnitude and longevity of mitogen-activated protein (MAP) kinase cascade activation contribute to the nature of the cellular response, differentiation, or proliferation. However, the mechanisms by which neurotrophins promote prolonged MAP kinase signaling are not well understood. Here we defined the Rin GTPase as a novel component of the regulatory machinery contributing to the selective integration of MAP kinase signaling and neuronal development. Rin is expressed exclusively in neurons and is activated by neurotrophin signaling, and loss-of-function analysis demonstrates that Rin makes an essential contribution to nerve growth factor (NGF)-mediated neuronal differentiation. Most surprisingly, although Rin was unable to stimulate MAP kinase activity in NIH 3T3 cells, it potently activated isoform-specific p38α MAP kinase signaling and weakly stimulated ERK signaling in pheochromocytoma (PC6) cells. This cell-type specificity is explained in part by the finding that Rin binds and stimulates b-Raf but does not activate c-Raf. Accordingly, selective down-regulation of Rin in PC6 cells suppressed neurotrophin-elicited activation of b-Raf and p38, without obvious effects on NGF-induced ERK activation. Moreover, the ability of NGF to promote neurite outgrowth was inhibited by Rin knockdown. Together, these observations establish Rin as a neuronal specific regulator of neurotrophin signaling, required to couple NGF stimulation to sustain activation of p38 MAP kinase and b-Raf signaling cascades required for neuronal development.

Original languageEnglish
Pages (from-to)37599-37609
Number of pages11
JournalJournal of Biological Chemistry
Issue number45
StatePublished - Nov 11 2005

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Rin GTPase couples nerve growth factor signalinq to p38 and b-Raf/ERK pathways to promote neuronal differentiation'. Together they form a unique fingerprint.

Cite this