TY - JOUR
T1 - RNF20 contributes to epigenetic immunosuppression through CDK9-dependent LSD1 stabilization
AU - Dong, Bo
AU - Wang, Xinzhao
AU - Song, Xiang
AU - Wang, Jianlin
AU - Liu, Xia
AU - Yu, Zhiyong
AU - Zhou, Yongkun
AU - Deng, Jiong
AU - Wu, Yadi
N1 - Publisher Copyright:
© 2024 the Author(s). Published by PNAS.
PY - 2024/2/13
Y1 - 2024/2/13
N2 - Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9–RNF20–LSD1 axis in the development of new cancer therapies.
AB - Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9–RNF20–LSD1 axis in the development of new cancer therapies.
KW - CDK9
KW - LSD1
KW - RNF20
KW - epigenetic
KW - immunosuppression
UR - http://www.scopus.com/inward/record.url?scp=85184458348&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85184458348&partnerID=8YFLogxK
U2 - 10.1073/pnas.2307150121
DO - 10.1073/pnas.2307150121
M3 - Article
C2 - 38315842
AN - SCOPUS:85184458348
SN - 0027-8424
VL - 121
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 7
M1 - e2307150121
ER -