Robust moiety model selection using mass spectrometry measured isotopologues

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Stable isotope resolved metabolomics (SIRM) experiments use stable isotope tracers to provide superior metabolomics datasets for metabolic flux analysis and metabolic modeling. Since assumptions of model correctness can seriously compromise interpretation of metabolic flux results, we have developed a metabolic modeling software package specifically designed for moiety model comparison and selection based on the metabolomics data provided. Here, we tested the effectiveness of model selection with two time-series mass spectrometry (MS) isotopologue datasets for uridine diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc) generated from different platforms utilizing direct infusion nanoelectrospray and liquid chromatography. Analysis results demonstrate the robustness of our model selection methods by the successful selection of the optimal model from over 40 models provided. Moreover, the effects of specific optimization methods, degree of optimization, selection criteria, and specific objective functions on model selection are illustrated. Overall, these results indicate that over-optimization can lead to model selection failure, but combining multiple datasets can help control this overfitting effect. The implication is that SIRM datasets in public repositories of reasonable quality can be combined with newly acquired datasets to improve model selection. Furthermore, curation efforts of public metabolomics repositories to maintain high data quality could have a huge impact on future metabolic modeling efforts.

Original languageEnglish
Article number118
JournalMetabolites
Volume10
Issue number3
DOIs
StatePublished - Mar 2020

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Funding

Funding: The work was supported in part by grant NSF 1419282 (PI Moseley).

FundersFunder number
National Science Foundation (NSF)
Directorate for Biological Sciences1419282

    Keywords

    • Isotopologue deconvolution
    • Model selection
    • Moiety modeling
    • Nonlinear inverse problem
    • Overfitting
    • Stable isotope resolved metabolomics (SIRM)

    ASJC Scopus subject areas

    • Endocrinology, Diabetes and Metabolism
    • Biochemistry
    • Molecular Biology

    Fingerprint

    Dive into the research topics of 'Robust moiety model selection using mass spectrometry measured isotopologues'. Together they form a unique fingerprint.

    Cite this