TY - JOUR
T1 - Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase
AU - Han, Fei
AU - Bossuyt, Julie
AU - Martin, Jody L.
AU - Despa, Sanda
AU - Bers, Donald M.
PY - 2010/12
Y1 - 2010/12
N2 - Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na+-K+-ATPase (NKA), mainly by reducing its affinity for internal Na+. The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α1 and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na+ concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na+ and had no significant effect on the maximum pump rate (Vmax). PKA activation with forskolin (20 μM) restored NKA Na+ affinity in cells expressing WT but not AA PLM and did not affect Vmax in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na+ affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.
AB - Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na+-K+-ATPase (NKA), mainly by reducing its affinity for internal Na+. The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α1 and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na+ concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na+ and had no significant effect on the maximum pump rate (Vmax). PKA activation with forskolin (20 μM) restored NKA Na+ affinity in cells expressing WT but not AA PLM and did not affect Vmax in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na+ affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.
KW - Apparent Na affinity
KW - FXYD
KW - PKA
KW - PKC
UR - http://www.scopus.com/inward/record.url?scp=78649659491&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649659491&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00027.2010
DO - 10.1152/ajpcell.00027.2010
M3 - Article
C2 - 20861470
AN - SCOPUS:78649659491
SN - 0363-6143
VL - 299
SP - C1363-C1369
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 6
ER -