Abstract
In 1997, Bousquet-Mélou and Eriksson initiated the study of lecture hall partitions, a fascinating family of partitions that yield a finite version of Euler’s celebrated odd/distinct partition theorem. In subsequent work on s-lecture hall partitions, they considered the self-reciprocal property for various associated generating func-tions, with the goal of characterizing those sequences s that give rise to generating functions of the form ((1 − qe1)(1 − qe2) · · · (1 −qen)) −1. We continue this line of investigation, connecting their work to the more general context of Gorenstein cones. We focus on the Gorenstein condition for s-lecture hall cones when s is a positive integer sequence generated by a second-order homogeneous linear recurrence with initial values 0 and 1. Among such sequences s, we prove that the n-dimensional s-lecture hall cone is Gorenstein for all n ≥ 1 if and only if s is an ℓ-sequence, i.e., recursively defined through s0 = 0, s1 = 1, and si = ℓsi−1 −si−2 for i ≥ 2. One consequence is that among such sequences s, unless s is an ℓ-sequence, the generating function for the s-lecture hall partitions can have the form ((1 − qe1)(1 −qe2) · · · (1 −qen)) −1 for at most finitely many n. We also apply the results to establish several conjectures by Pensyl and Savage regarding the symmetry of h ∗-vectors for s-lecture hall polytopes. We end with open questions and directions for further research.
Original language | English |
---|---|
Pages (from-to) | 123-147 |
Number of pages | 25 |
Journal | Ramanujan Journal |
Volume | 36 |
Issue number | 1 |
DOIs | |
State | Published - Jan 14 2014 |
Bibliographical note
Publisher Copyright:© Springer Science+Business Media New York 2014.
Keywords
- Generating function
- Gorenstein
- Lecture hall partition
- Polyhedral cone
- Self-reciprocal polynomial
ASJC Scopus subject areas
- Algebra and Number Theory