SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors

Kai Zhao, Sheng Di, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac, Zizhong Chen, Franck Cappello

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Efficient error-controlled lossy compressors are becoming critical to the success of today's large-scale scientific applications because of the ever-increasing volume of data produced by the applications. In the past decade, many lossless and lossy compressors have been developed with distinct design principles for different scientific datasets in largely diverse scientific domains. In order to support researchers and users assessing and comparing compressors in a fair and convenient way, we establish a standard compression assessment benchmark - Scientific Data Reduction Benchmark (SDRBench)1. SDRBench contains a vast variety of real-world scientific datasets across different domains, summarizes several critical compression quality evaluation metrics, and integrates many state-of-the-art lossy and lossless compressors. We demonstrate evaluation results using SDRBench and summarize six valuable takeaways that are helpful to the in-depth understanding of lossy compressors.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
EditorsXintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz
Pages2716-2724
Number of pages9
ISBN (Electronic)9781728162515
DOIs
StatePublished - Dec 10 2020
Event8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States
Duration: Dec 10 2020Dec 13 2020

Publication series

NameProceedings - 2020 IEEE International Conference on Big Data, Big Data 2020

Conference

Conference8th IEEE International Conference on Big Data, Big Data 2020
Country/TerritoryUnited States
CityVirtual, Atlanta
Period12/10/2012/13/20

Bibliographical note

Funding Information:
including software, applications, hardware, advanced system engineering and early testbed platforms, to support the nation’s exascale computing imperative. The material was supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357, and supported by the National Science Foundation under Grant No. 1619253. We acknowledge the computing resources provided on Bebop, which is operated by the Laboratory Computing Resource Center at Argonne National Laboratory.

Funding Information:
This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations – the Office of Science and the National Nuclear Security Administration, responsible for the planning and preparation of a capable exascale ecosystem,

Publisher Copyright:
© 2020 IEEE.

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors'. Together they form a unique fingerprint.

Cite this