SDSS-IV MaNGA: Constraints on the conditions for star formation in galaxy discs

David V. Stark, Kevin A. Bundy, Matthew E. Orr, Philip F. Hopkins, Kyle Westfall, Matthew Bershady, Cheng Li, Dmitry Bizyaev, Karen L. Masters, Anne Marie Weijmans, Ivan Lacerna, Daniel Thomas, Niv Drory, Renbin Yan, Kai Zhang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Regions of disc galaxies with widespread star formation tend to be both gravitationally unstable and self-shielded against ionizing radiation, whereas extended outer discs with little or no star formation tend to be stable and unshielded on average. We explore what drives the transition between these two regimes, specifically whether discs first meet the conditions for selfshielding (parametrized by dust optical depth, τ) or gravitational instability (parametrized by a modified version of Toomre's instability parameters, Qthermal, which quantifies the stability of a gas disc that is thermally supported at T = 104 K).We first introduce a new metric formed by the product of these quantities, Qthermalτ, which indicates whether the conditions for disc instability or self-shielding are easier to meet in a given region of a galaxy, and we discuss how Qthermalτ can be constrained even in the absence of direct gas information. We then analyse a sample of 13 galaxies with resolved gas measurements and find that on average galaxies will reach the threshold for disc instabilities (Qthermal < 1) before reaching the threshold for self-shielding (τ > 1). Using integral field spectroscopic observations of a sample of 236 galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey, we find that the value of Qthermalτ in star-forming discs is consistent with similar behaviour. These results support a scenario where disc fragmentation and collapse occurs before self-shielding, suggesting that gravitational instabilities are the primary condition for widespread star formation in galaxy discs. Our results support similar conclusions based on recent galaxy simulations.

Original languageEnglish
Pages (from-to)2323-2333
Number of pages11
JournalMonthly Notices of the Royal Astronomical Society
Volume474
Issue number2
DOIs
StatePublished - Feb 21 2018

Bibliographical note

Funding Information:
We thank our anonymous referee for constructive feedback that greatly improved this work. We would also like to thank Christy Tremonti and Eric Emsellem for useful discussions. This work was supported by World Premier International Research Centre Initiative (WPI Initiative), MEXT, Japan. MB acknowledges NSF-AST-1517006. A-MW acknowledges support of a Leverhulme Trust Early Career Fellowship. DB acknowledges support from RSF grant RSCF-14-50-00043. MEO was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1144469. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the centre for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Centre for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA, Heidelberg), Max-Planck-Institut für Astrophysik (MPA, Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observat ário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.

Funding Information:
We thank our anonymous referee for constructive feedback that greatly improved this work. We would also like to thank Christy Tremonti and Eric Emsellem for useful discussions. This work was supported by World Premier International Research Centre Initiative (WPI Initiative), MEXT, Japan. MB acknowledges NSF-AST-1517006. A-MW acknowledges support of a Leverhulme Trust Early Career Fellowship. DB acknowledges support from RSF grant RSCF-14-50-00043. MEO was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1144469. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the centre for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Centre for Astrophysics, Instituto de Astrof?sica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut f?r Astrophysik Potsdam (AIP), Max-Planck-Institut f?r Astronomie (MPIA, Heidelberg), Max-Planck-Institut f?r Astrophysik (MPA, Garching), Max-Planck-Institut f?r Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observat ?rio Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Aut?noma de M?xico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.

Publisher Copyright:
© 2017 The Author(s).

Keywords

  • Galaxies: star formation

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'SDSS-IV MaNGA: Constraints on the conditions for star formation in galaxy discs'. Together they form a unique fingerprint.

Cite this