SDSS-IV MaNGA: Properties of galaxies with kinematically decoupled stellar and gaseous components

Yifei Jin, Yanmei Chen, Yong Shi, C. A. Tremonti, M. A. Bershady, M. Merrifield, E. Emsellem, Hai Fu, D. Wake, K. Bundy, Lihwai Lin, M. Argudo-Fernandez, Song Huang, D. V. Stark, T. Storchi-Bergmann, D. Bizyaev, J. Brownstein, J. Chisholm, Qi Guo, Lei HaoJian Hu, Cheng Li, Ran Li, K. L. Masters, E. Malanushenko, Kaike Pan, R. A. Riffel, A. Roman-Lopes, A. Simmons, D. Thomas, Lan Wang, K. Westfall, Renbin Yan

Research output: Contribution to journalArticlepeer-review

57 Scopus citations


We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, i.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 'Green Valley' and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the starforming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.

Original languageEnglish
Pages (from-to)913-926
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Issue number1
StatePublished - Nov 21 2016

Bibliographical note

Funding Information:
YMC acknowledges support from NSFC grant 11573013, 11133001, the Opening Project of Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences. YS acknowledges support from NSFC grant 11373021, the CAS Pilot-b grant no. XDB09000000 and Jiangsu Scientific Committee grant BK20150014. CAT acknowledges support from National Science Foundation of the United States Grant No. 1412287. This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan and by JSPS KAKENHI Grant Number JP15K17603 Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSSIV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center forAstrophysics, Instituto de Astrofísica deCanarias, The Johns Hopkins University,Kavli Institute for the Physics and Mathematics of the Universe (IPMU) /University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP),Max-Planck-Institut für Astronomie (MPIA Heidelberg),Max-Planck-Institut für Astrophysik (MPAGarching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional /MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University ofVirginia,University ofWashington, University ofWisconsin, Vanderbilt University, and Yale University.

Publisher Copyright:
© 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.


  • Galaxies: evolution
  • Galaxies: formation
  • Galaxies: stellar content
  • Galaxies: structure
  • Galaxy: abundances

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'SDSS-IV MaNGA: Properties of galaxies with kinematically decoupled stellar and gaseous components'. Together they form a unique fingerprint.

Cite this