Abstract
The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of P and CP symmetries of the strong interaction amidst a strong electromagnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. To better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of Ru4496+Ru4496 and Zr4096+Zr4096 at sNN=200 GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.
Original language | English |
---|---|
Article number | 014901 |
Journal | Physical Review C |
Volume | 105 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2022 |
Bibliographical note
Publisher Copyright:©2022 American Physical Society
ASJC Scopus subject areas
- Nuclear and High Energy Physics
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Search for the chiral magnetic effect with isobar collisions at'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review C, Vol. 105, No. 1, 014901, 01.2022.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Search for the chiral magnetic effect with isobar collisions at
AU - Abdallah, M. S.
AU - Aboona, B. E.
AU - Adam, J.
AU - Adamczyk, L.
AU - Adams, J. R.
AU - Adkins, J. K.
AU - Agakishiev, G.
AU - Aggarwal, I.
AU - Aggarwal, M. M.
AU - Ahammed, Z.
AU - Alekseev, I.
AU - Anderson, D. M.
AU - Aparin, A.
AU - Aschenauer, E. C.
AU - Ashraf, M. U.
AU - Atetalla, F. G.
AU - Attri, A.
AU - Averichev, G. S.
AU - Bairathi, V.
AU - Baker, W.
AU - Ball Cap, J. G.
AU - Barish, K.
AU - Behera, A.
AU - Bellwied, R.
AU - Bhagat, P.
AU - Bhasin, A.
AU - Bielcik, J.
AU - Bielcikova, J.
AU - Bordyuzhin, I. G.
AU - Brandenburg, J. D.
AU - Brandin, A. V.
AU - Bunzarov, I.
AU - Cai, X. Z.
AU - Caines, H.
AU - Calderón de la Barca Sánchez, M.
AU - Cebra, D.
AU - Chakaberia, I.
AU - Chaloupka, P.
AU - Chan, B. K.
AU - Chang, F. H.
AU - Chang, Z.
AU - Chankova-Bunzarova, N.
AU - Chatterjee, A.
AU - Chattopadhyay, S.
AU - Chen, D.
AU - Chen, J.
AU - Chen, J. H.
AU - Chen, X.
AU - Chen, Z.
AU - Cheng, J.
AU - Chevalier, M.
AU - Choudhury, S.
AU - Christie, W.
AU - Chu, X.
AU - Crawford, H. J.
AU - Csanád, M.
AU - Daugherity, M.
AU - Dedovich, T. G.
AU - Deppner, I. M.
AU - Derevschikov, A. A.
AU - Dhamija, A.
AU - Di Carlo, L.
AU - Didenko, L.
AU - Dixit, P.
AU - Dong, X.
AU - Drachenberg, J. L.
AU - Duckworth, E.
AU - Dunlop, J. C.
AU - Elsey, N.
AU - Engelage, J.
AU - Eppley, G.
AU - Esumi, S.
AU - Evdokimov, O.
AU - Ewigleben, A.
AU - Eyser, O.
AU - Fatemi, R.
AU - Fawzi, F. M.
AU - Fazio, S.
AU - Federic, P.
AU - Fedorisin, J.
AU - Feng, C. J.
AU - Feng, Y.
AU - Filip, P.
AU - Finch, E.
AU - Fisyak, Y.
AU - Francisco, A.
AU - Fu, C.
AU - Fulek, L.
AU - Gagliardi, C. A.
AU - Galatyuk, T.
AU - Geurts, F.
AU - Ghimire, N.
AU - Gibson, A.
AU - Gopal, K.
AU - Gou, X.
AU - Grosnick, D.
AU - Gupta, A.
AU - Guryn, W.
AU - Hamad, A. I.
AU - Hamed, A.
AU - Han, Y.
AU - Harabasz, S.
AU - Harasty, M. D.
AU - Harris, J. W.
AU - Harrison, H.
AU - He, S.
AU - He, W.
AU - He, X. H.
AU - He, Y.
AU - Heppelmann, S.
AU - Heppelmann, S.
AU - Herrmann, N.
AU - Hoffman, E.
AU - Holub, L.
AU - Hu, Y.
AU - Huang, H.
AU - Huang, H. Z.
AU - Huang, S. L.
AU - Huang, T.
AU - Huang, X.
AU - Huang, Y.
AU - Humanic, T. J.
AU - Igo, G.
AU - Isenhower, D.
AU - Jacobs, W. W.
AU - Jena, C.
AU - Jentsch, A.
AU - Ji, Y.
AU - Jia, J.
AU - Jiang, K.
AU - Ju, X.
AU - Judd, E. G.
AU - Kabana, S.
AU - Kabir, M. L.
AU - Kagamaster, S.
AU - Kalinkin, D.
AU - Kang, K.
AU - Kapukchyan, D.
AU - Kauder, K.
AU - Ke, H. W.
AU - Keane, D.
AU - Kechechyan, A.
AU - Kelsey, M.
AU - Khyzhniak, Y. V.
AU - Kikoła, D. P.
AU - Kim, C.
AU - Kimelman, B.
AU - Kincses, D.
AU - Kisel, I.
AU - Kiselev, A.
AU - Knospe, A. G.
AU - Ko, H. S.
AU - Kochenda, L.
AU - Kosarzewski, L. K.
AU - Kramarik, L.
AU - Kravtsov, P.
AU - Kumar, L.
AU - Kumar, S.
AU - Kunnawalkam Elayavalli, R.
AU - Kwasizur, J. H.
AU - Lacey, R.
AU - Lan, S.
AU - Landgraf, J. M.
AU - Lauret, J.
AU - Lebedev, A.
AU - Lednicky, R.
AU - Lee, J. H.
AU - Leung, Y. H.
AU - Li, C.
AU - Li, C.
AU - Li, W.
AU - Li, X.
AU - Li, Y.
AU - Li, Y.
AU - Liang, X.
AU - Liang, Y.
AU - Licenik, R.
AU - Lin, T.
AU - Lin, Y.
AU - Lisa, M. A.
AU - Liu, F.
AU - Liu, H.
AU - Liu, H.
AU - Liu, P.
AU - Liu, T.
AU - Liu, X.
AU - Liu, Y.
AU - Liu, Z.
AU - Ljubicic, T.
AU - Llope, W. J.
AU - Longacre, R. S.
AU - Loyd, E.
AU - Lukow, N. S.
AU - Luo, X. F.
AU - Ma, L.
AU - Ma, R.
AU - Ma, Y. G.
AU - Magdy, N.
AU - Mallick, D.
AU - Margetis, S.
AU - Markert, C.
AU - Matis, H. S.
AU - Mazer, J. A.
AU - Minaev, N. G.
AU - Mioduszewski, S.
AU - Mohanty, B.
AU - Mondal, M. M.
AU - Mooney, I.
AU - Morozov, D. A.
AU - Mukherjee, A.
AU - Nagy, M.
AU - Nam, J. D.
AU - Nasim, M.
AU - Nayak, K.
AU - Neff, D.
AU - Nelson, J. M.
AU - Nemes, D. B.
AU - Nie, M.
AU - Nigmatkulov, G.
AU - Niida, T.
AU - Nishitani, R.
AU - Nogach, L. V.
AU - Nonaka, T.
AU - Nunes, A. S.
AU - Odyniec, G.
AU - Ogawa, A.
AU - Oh, S.
AU - Okorokov, V. A.
AU - Page, B. S.
AU - Pak, R.
AU - Pan, J.
AU - Pandav, A.
AU - Pandey, A. K.
AU - Panebratsev, Y.
AU - Parfenov, P.
AU - Pawlik, B.
AU - Pawlowska, D.
AU - Perkins, C.
AU - Pinsky, L.
AU - Pintér, R. L.
AU - Pluta, J.
AU - Pokhrel, B. R.
AU - Ponimatkin, G.
AU - Porter, J.
AU - Posik, M.
AU - Prozorova, V.
AU - Pruthi, N. K.
AU - Przybycien, M.
AU - Putschke, J.
AU - Qiu, H.
AU - Quintero, A.
AU - Racz, C.
AU - Radhakrishnan, S. K.
AU - Raha, N.
AU - Ray, R. L.
AU - Reed, R.
AU - Ritter, H. G.
AU - Robotkova, M.
AU - Rogachevskiy, O. V.
AU - Romero, J. L.
AU - Roy, D.
AU - Ruan, L.
AU - Rusnak, J.
AU - Sahoo, A. K.
AU - Sahoo, N. R.
AU - Sako, H.
AU - Salur, S.
AU - Sandweiss, J.
AU - Sato, S.
AU - Schmidke, W. B.
AU - Schmitz, N.
AU - Schweid, B. R.
AU - Seck, F.
AU - Seger, J.
AU - Sergeeva, M.
AU - Seto, R.
AU - Seyboth, P.
AU - Shah, N.
AU - Shahaliev, E.
AU - Shanmuganathan, P. V.
AU - Shao, M.
AU - Shao, T.
AU - Sheikh, A. I.
AU - Shen, D. Y.
AU - Shi, S. S.
AU - Shi, Y.
AU - Shou, Q. Y.
AU - Sichtermann, E. P.
AU - Sikora, R.
AU - Simko, M.
AU - Singh, J.
AU - Singha, S.
AU - Skoby, M. J.
AU - Smirnov, N.
AU - Söhngen, Y.
AU - Solyst, W.
AU - Sorensen, P.
AU - Spinka, H. M.
AU - Srivastava, B.
AU - Stanislaus, T. D.S.
AU - Stefaniak, M.
AU - Stewart, D. J.
AU - Strikhanov, M.
AU - Stringfellow, B.
AU - Suaide, A. A.P.
AU - Sumbera, M.
AU - Summa, B.
AU - Sun, X. M.
AU - Sun, X.
AU - Sun, Y.
AU - Sun, Y.
AU - Surrow, B.
AU - Svirida, D. N.
AU - Sweger, Z. W.
AU - Szymanski, P.
AU - Tang, A. H.
AU - Tang, Z.
AU - Taranenko, A.
AU - Tarnowsky, T.
AU - Thomas, J. H.
AU - Timmins, A. R.
AU - Tlusty, D.
AU - Todoroki, T.
AU - Tokarev, M.
AU - Tomkiel, C. A.
AU - Trentalange, S.
AU - Tribble, R. E.
AU - Tribedy, P.
AU - Tripathy, S. K.
AU - Truhlar, T.
AU - Trzeciak, B. A.
AU - Tsai, O. D.
AU - Tu, Z.
AU - Ullrich, T.
AU - Underwood, D. G.
AU - Upsal, I.
AU - Van Buren, G.
AU - Vanek, J.
AU - Vasiliev, A. N.
AU - Vassiliev, I.
AU - Verkest, V.
AU - Videbæk, F.
AU - Vokal, S.
AU - Voloshin, S. A.
AU - Wang, F.
AU - Wang, G.
AU - Wang, J. S.
AU - Wang, P.
AU - Wang, Y.
AU - Wang, Y.
AU - Wang, Z.
AU - Webb, J. C.
AU - Weidenkaff, P. C.
AU - Wen, L.
AU - Westfall, G. D.
AU - Wieman, H.
AU - Wissink, S. W.
AU - Wu, J.
AU - Wu, J.
AU - Wu, Y.
AU - Xi, B.
AU - Xiao, Z. G.
AU - Xie, G.
AU - Xie, W.
AU - Xu, H.
AU - Xu, N.
AU - Xu, Q. H.
AU - Xu, Y.
AU - Xu, Z.
AU - Xu, Z.
AU - Yang, C.
AU - Yang, Q.
AU - Yang, S.
AU - Yang, Y.
AU - Ye, Z.
AU - Ye, Z.
AU - Yi, L.
AU - Yip, K.
AU - Yu, Y.
AU - Zbroszczyk, H.
AU - Zha, W.
AU - Zhang, C.
AU - Zhang, D.
AU - Zhang, J.
AU - Zhang, S.
AU - Zhang, S.
AU - Zhang, X. P.
AU - Zhang, Y.
AU - Zhang, Y.
AU - Zhang, Y.
AU - Zhang, Z. J.
AU - Zhang, Z.
AU - Zhang, Z.
AU - Zhao, J.
AU - Zhou, C.
AU - Zhu, X.
AU - Zurek, M.
AU - Zyzak, M.
N1 - Publisher Copyright: ©2022 American Physical Society
PY - 2022/1
Y1 - 2022/1
N2 - The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of P and CP symmetries of the strong interaction amidst a strong electromagnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. To better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of Ru4496+Ru4496 and Zr4096+Zr4096 at sNN=200 GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.
AB - The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of P and CP symmetries of the strong interaction amidst a strong electromagnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. To better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of Ru4496+Ru4496 and Zr4096+Zr4096 at sNN=200 GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.
UR - http://www.scopus.com/inward/record.url?scp=85123300122&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123300122&partnerID=8YFLogxK
U2 - 10.1103/PhysRevC.105.014901
DO - 10.1103/PhysRevC.105.014901
M3 - Article
AN - SCOPUS:85123300122
SN - 2469-9985
VL - 105
JO - Physical Review C
JF - Physical Review C
IS - 1
M1 - 014901
ER -