Search for ultralight axion dark matter in a side-band analysis of a 199Hg free-spin precession signal

C. Abel, N. J. Ayres, G. Ban, G. Bison, K. Bodek, V. Bondar, E. Chanel, C. B. Crawford, M. Daum, B. Dechenaux, S. Emmenegger, P. Flaux, W. C. Griffith, P. G. Harris, Y. Kermaidic, K. Kirch, S. Komposch, P. A. Koss, J. Krempel, B. LaussT. Lefort, P. Mohanmurthy, O. Naviliat-Cuncic, D. Pais, F. M. Piegsa, G. Pignol, M. Rawlik, D. Ries, S. Roccia, D. Rozpedzik, P. Schmidt-Wellenburg, N. Severijns, Y. V. Stadnik, J. A. Thorne, A. Weis, E. Wursten, J. Zejma, G. Zsigmond

Research output: Contribution to journalArticlepeer-review

Abstract

Ultra-low-mass axions are a viable dark matter candidate and may form a coherently oscillating classical field. Nuclear spins in experiments on Earth might couple to this oscillating axion dark-matter field, when propagating on Earth's trajectory through our Galaxy. This spin coupling resembles an oscillating pseudo-magnetic field which modulates the spin precession of nuclear spins. Here we report on the null result of a demonstration experiment searching for a frequency modulation of the free spin-precession signal of 199Hg in a 1 μT magnetic field. Our search covers the axion mass range 10-16eV ≲ ma ≲ 10-13eV and achieves a peak sensitivity to the axion-nucleon coupling of gaNN ∼ 3.5

Original languageEnglish
Article number058
JournalSciPost Physics
Volume15
Issue number2
DOIs
StatePublished - Aug 2023

Bibliographical note

Publisher Copyright:
© The Author(s) 2023.

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Search for ultralight axion dark matter in a side-band analysis of a 199Hg free-spin precession signal'. Together they form a unique fingerprint.

Cite this