TY - JOUR
T1 - Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling
AU - Bauer, Björn
AU - Hartz, Anika M.S.
AU - Pekcec, Anton
AU - Toellner, Kathrin
AU - Miller, David S.
AU - Potschka, Heidrun
PY - 2008/5
Y1 - 2008/5
N2 - Increased expression of drug efflux transporters at the blood-brain barrier accompanies epileptic seizures and complicates therapy with antiepileptic drugs. This study is concerned with identifying mechanistic links that connect seizure activity to increased P-glycoprotein expression at the blood-brain barrier. In this regard, we tested the hypothesis that seizures increase brain extracellular glutamate, which signals through an N-methyl-D-aspartate (NMDA) receptor and cyclooxygenase-2 (COX-2) in brain capillaries to increase blood-brain barrier P-glycoprotein expression. Consistent with this hypothesis, exposing isolated rat or mouse brain capillaries to glutamate for 15 to 30 min increased P-glycoprotein expression and transport activity hours later. These increases were blocked by 5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate) (MK-801), an NMDA receptor antagonist, and by celecoxib, a selective COX-2 inhibitor; no such glutamate-induced increases were seen in brain capillaries from COX-2-null mice. In rats, intracerebral microinjection of glutamate caused locally increased P-glycoprotein expression in brain capillaries. Moreover, using a pilocarpine status epilepticus rat model, we observed seizure-induced increases in capillary P-glycoprotein expression that were attenuated by administration of indomethacin, a COX inhibitor. Our findings suggest that brain uptake of some antiepileptic drugs can be enhanced through COX-2 inhibition. Moreover, they provide insight into one mechanism that underlies drug resistance in epilepsy and possibly other central nervous system disorders.
AB - Increased expression of drug efflux transporters at the blood-brain barrier accompanies epileptic seizures and complicates therapy with antiepileptic drugs. This study is concerned with identifying mechanistic links that connect seizure activity to increased P-glycoprotein expression at the blood-brain barrier. In this regard, we tested the hypothesis that seizures increase brain extracellular glutamate, which signals through an N-methyl-D-aspartate (NMDA) receptor and cyclooxygenase-2 (COX-2) in brain capillaries to increase blood-brain barrier P-glycoprotein expression. Consistent with this hypothesis, exposing isolated rat or mouse brain capillaries to glutamate for 15 to 30 min increased P-glycoprotein expression and transport activity hours later. These increases were blocked by 5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate) (MK-801), an NMDA receptor antagonist, and by celecoxib, a selective COX-2 inhibitor; no such glutamate-induced increases were seen in brain capillaries from COX-2-null mice. In rats, intracerebral microinjection of glutamate caused locally increased P-glycoprotein expression in brain capillaries. Moreover, using a pilocarpine status epilepticus rat model, we observed seizure-induced increases in capillary P-glycoprotein expression that were attenuated by administration of indomethacin, a COX inhibitor. Our findings suggest that brain uptake of some antiepileptic drugs can be enhanced through COX-2 inhibition. Moreover, they provide insight into one mechanism that underlies drug resistance in epilepsy and possibly other central nervous system disorders.
UR - http://www.scopus.com/inward/record.url?scp=42449149172&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=42449149172&partnerID=8YFLogxK
U2 - 10.1124/mol.107.041210
DO - 10.1124/mol.107.041210
M3 - Article
C2 - 18094072
AN - SCOPUS:42449149172
SN - 0026-895X
VL - 73
SP - 1444
EP - 1453
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 5
ER -