TY - JOUR
T1 - Selected physical properties of new resin-modified glass ionomer luting cements
AU - Garner, Jason R.
AU - Wajdowicz, Michael N.
AU - DuVall, Nicholas B.
AU - Roberts, Howard W.
N1 - Publisher Copyright:
© 2016 Editorial Council for the Journal of Prosthetic Dentistry
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Statement of problem Two resin-modified glass ionomer (RMGI)-based luting agents have been recently marketed without independent reports of their physical properties. Purpose The purpose of this in vitro study was to evaluate selected physical properties of 2 newly marketed RMGI luting agents and compare the findings with traditional materials. Material and methods Specimens (N=12) of Nexus RMGI, UltraCem, GC Fuji Cem 2, and RelyX Luting Plus were fabricated using standardized molds for flexural strength and fracture toughness according to manufacturer recommendations and stored in physiologic phosphate-buffered saline solution at 37°C until testing. Specimens were tested at 1 and 24 hours, 1 week, and 1 month. Mean values for flexural strength, flexural modulus, flexural toughness, and fracture toughness were determined. Additionally, film thickness (N=12) for each material was determined following Amerian National Standards Association/American Dental Association (ANSI/ADA) specifications. Mean results were analyzed with Kruskal-Wallis and Mann-Whitney U tests (α=.05). Results All luting agents exhibited a similar film thickness that met ANSI/ADA requirements for aqueous-based luting agents. Nexus RMGI surprisingly demonstrated significantly greater flexural strength and fracture toughness at 1 hour, which decreased significantly at 24 hours, making it similar to the other materials evaluated. All materials had similar flexural strength values at 7 days. Conclusions Physical property performance was material dependent. Nexus RMGI demonstrated greater early physical properties that were significantly less at 24 hours. UltraCem, GC Fuji Cem 2, and RelyX Luting Plus demonstrated the increasing physical property development that is normally associated with polyalkenoate-based systems.
AB - Statement of problem Two resin-modified glass ionomer (RMGI)-based luting agents have been recently marketed without independent reports of their physical properties. Purpose The purpose of this in vitro study was to evaluate selected physical properties of 2 newly marketed RMGI luting agents and compare the findings with traditional materials. Material and methods Specimens (N=12) of Nexus RMGI, UltraCem, GC Fuji Cem 2, and RelyX Luting Plus were fabricated using standardized molds for flexural strength and fracture toughness according to manufacturer recommendations and stored in physiologic phosphate-buffered saline solution at 37°C until testing. Specimens were tested at 1 and 24 hours, 1 week, and 1 month. Mean values for flexural strength, flexural modulus, flexural toughness, and fracture toughness were determined. Additionally, film thickness (N=12) for each material was determined following Amerian National Standards Association/American Dental Association (ANSI/ADA) specifications. Mean results were analyzed with Kruskal-Wallis and Mann-Whitney U tests (α=.05). Results All luting agents exhibited a similar film thickness that met ANSI/ADA requirements for aqueous-based luting agents. Nexus RMGI surprisingly demonstrated significantly greater flexural strength and fracture toughness at 1 hour, which decreased significantly at 24 hours, making it similar to the other materials evaluated. All materials had similar flexural strength values at 7 days. Conclusions Physical property performance was material dependent. Nexus RMGI demonstrated greater early physical properties that were significantly less at 24 hours. UltraCem, GC Fuji Cem 2, and RelyX Luting Plus demonstrated the increasing physical property development that is normally associated with polyalkenoate-based systems.
UR - http://www.scopus.com/inward/record.url?scp=84994507721&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84994507721&partnerID=8YFLogxK
U2 - 10.1016/j.prosdent.2016.07.011
DO - 10.1016/j.prosdent.2016.07.011
M3 - Article
C2 - 27666498
AN - SCOPUS:84994507721
SN - 0022-3913
VL - 117
SP - 277
EP - 282
JO - Journal of Prosthetic Dentistry
JF - Journal of Prosthetic Dentistry
IS - 2
ER -