Selective laser melting of Ni-rich NiTi: Selection of process parameters and the superelastic response

Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Ehsan Saghaian, Ahmadreza Jahadakbar, Haluk Karaca, Mohammad Elahinia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Material and mechanical properties of NiTi shape memory alloys strongly depend on the fabrication process parameters and the resulting microstructure. In selective laser melting, the combination of parameters such as laser power, scanning speed, and hatch spacing determine the microstructural defects, grain size and texture. Therefore, processing parameters can be adjusted to tailor the microstructure and mechanical response of the alloy. In this work, NiTi samples were fabricated using Ni50.8Ti (at.%) powder via SLM PXM by Phenix/3D Systems and the effects of processing parameters were systematically studied. The relationship between the processing parameters and superelastic properties were investigated thoroughly. It will be shown that energy density is not the only parameter that governs the material response. It will be shown that hatch spacing is the dominant factor to tailor the superelastic response. It will be revealed that with the selection of right process parameters, perfect superelasticity with recoverable strains of up to 5.6% can be observed in the as-fabricated condition.

Original languageEnglish
Title of host publicationBehavior and Mechanics of Multifunctional Materials and Composites XII
EditorsHani E. Naguib
ISBN (Electronic)9781510616882
DOIs
StatePublished - 2018
EventBehavior and Mechanics of Multifunctional Materials and Composites XII 2018 - Denver, United States
Duration: Mar 5 2018Mar 8 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10596
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceBehavior and Mechanics of Multifunctional Materials and Composites XII 2018
Country/TerritoryUnited States
CityDenver
Period3/5/183/8/18

Bibliographical note

Publisher Copyright:
© 2018 SPIE.

Keywords

  • Additive manufacturing
  • Biomedical implants
  • Ni-rich NiTi
  • Selective laser melting
  • Shape memory alloys
  • Superelasticity

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Selective laser melting of Ni-rich NiTi: Selection of process parameters and the superelastic response'. Together they form a unique fingerprint.

Cite this