Abstract
To tackle the problem of limited annotated data, semisupervised learning is attracting attention as an alternative to fully supervised models. Moreover, optimizing a multipletask model to learn "multiple contexts" can provide better generalizability compared to single-task models. We propose a novel semi-supervised multiple-task model leveraging selfsupervision and adversarial training-namely, self-supervised, semi-supervised, multi-context learning (S4MCL)-and apply it to two crucial medical imaging tasks, classification and segmentation. Our experiments on spine X-rays reveal that the S4MCL model significantly outperforms semisupervised single-task, semi-supervised multi-context, and fully-supervised single-task models, even with a 50% reduction of classification and segmentation labels.
Original language | English |
---|---|
Title of host publication | AAAI 2020 - 34th AAAI Conference on Artificial Intelligence |
Pages | 13815-13816 |
Number of pages | 2 |
ISBN (Electronic) | 9781577358350 |
State | Published - 2020 |
Event | 34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States Duration: Feb 7 2020 → Feb 12 2020 |
Publication series
Name | AAAI 2020 - 34th AAAI Conference on Artificial Intelligence |
---|
Conference
Conference | 34th AAAI Conference on Artificial Intelligence, AAAI 2020 |
---|---|
Country/Territory | United States |
City | New York |
Period | 2/7/20 → 2/12/20 |
Bibliographical note
Publisher Copyright:© 2020 The Twenty-Fifth AAAI/SIGAI Doctoral Consortium (AAAI-20). All Rights Reserved.
ASJC Scopus subject areas
- Artificial Intelligence