Abstract
We prove a limiting eigenvalue distribution theorem (LEDT) for suitably scaled eigenvalue clusters around the discrete negative eigenvalues of the hydrogen atom Hamiltonian formed by the perturbation by a weak constant magnetic field. We study the hydrogen atom Zeeman Hamiltonian HV(h, B) = (1 / 2) (- ıh∇ - A(h)) 2- | x| - 1, defined on L2(R3) , in a constant magnetic field B(h) = ∇ × A(h) = (0 , 0 , ϵ(h) B) in the weak field limit ϵ(h) → 0 as h→ 0. We consider the Planck’s parameter h taking values along the sequence h= 1 / (N+ 1) , with N= 0 , 1 , 2 , … , and N→ ∞. We prove a semiclassical N→ ∞ LEDT of the Szegö-type for the scaled eigenvalue shifts and obtain both (i) an expression involving the regularized classical Kepler orbits with energy E= - 1 / 2 and (ii) a weak limit measure that involves the component ℓ3 of the angular momentum vector in the direction of the magnetic field. This LEDT extends results of Szegö-type for eigenvalue clusters for bounded perturbations of the hydrogen atom to the Zeeman effect. The new aspect of this work is that the perturbation involves the unbounded, first-order, partial differential operator w(h,B)=(ϵ(h)B)28(x12+x22)-ϵ(h)B2hL3, where the operator hL3 is the third component of the usual angular momentum operator and is the quantization of ℓ3. The unbounded Zeeman perturbation is controlled using localization properties of both the hydrogen atom coherent states Ψ α , N, and their derivatives L3(h) Ψ α , N, in the large quantum number regime N→ ∞.
Original language | English |
---|---|
Pages (from-to) | 3933-3973 |
Number of pages | 41 |
Journal | Annales Henri Poincare |
Volume | 18 |
Issue number | 12 |
DOIs | |
State | Published - Dec 1 2017 |
Bibliographical note
Funding Information:PDH was partially supported by NSF Grants 0803379 and 1103104 during the time this work was done. CV-B was partially supported by the projects PAPIIT-UNAM IN106812, PAPIIT-UNAM IN104015 and thanks the members of the Department of Mathematics of the University of Kentucky for their hospitality during a visit. MA-C was supported by a fellowship of DGAPA-UNAM, by Project PAPIIT-UNAM IN106812, and by CONACYT under the Grants 219631, CB-2013-01 and 258302, CB-2015-01. The authors want to
Publisher Copyright:
© 2017, Springer International Publishing AG.
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Nuclear and High Energy Physics
- Mathematical Physics